BUILD A SIMPLE FM TRANSMITTER!

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE
BUYER'S GUIDE
TO DSO's
A round-up of what you need
 to know betore you buy a Digital Storage Oscilloscope

Listen to
your heartbeat with our DOPPLER ULIRASOUND HEART MONIIOR

Add FM
MUSIC ON HOLD to your telephone

Troubleshoot

 microprocessor circuits with our MICRO MONITOR \$3.75. C'AN
 $39[736 \mathrm{CHD9976} 93$

MR ROEERT DAHM
997 GPANC AU ALFOPR: IL

70 S E R I E S I I

8 New Meters. 8 Old-Fashioned Values.

Introducing Fluke's 70 Series II, nextgeneration multimeters that meet the increasing demands of your job and your budget.

Consider. At the top of the line, the new Fluke 79 and 29 deliver more high-performance features - capacitance, frequency, a tast 63segment bar graph,Lo-Ohms range, Smoothing ${ }^{T M}$, faster ranges - than DMMs costing much more.
At the entry level, the new model 70, Fluke's lowest-priced DMM ever, delivers unparalleled Fluke quality at a price comparable to "disposable" meters.
And in between are all the models that have made the 70 Series the most popular DMM family in the world - updated, refined and delivering even more value than ever.

BASICS" REDEFINED
No matter which 70 Series II you choose, you get simple, one-handed operation. High resolution. And built-in, go anywhere reliabil lty. Automatic Touch Hold ${ }^{\text {® }}$ - standard on every model - locks the reading on the display and signals you with a beep, automatically updating for each new measurement without a reset. Leaving you free to concentrate on your work, not on your meter.
YOUR BEST CHOICE
Best of all, every 70 Series II is a Fluke, backed by a worldwide service network and an industryleading 3 year warranty.
So the next time you're in the market for a new meter, ask for the one that guarantees oldfashioned value. Fluke 70 Series II. For more information call 1-800-6789-LIT. Or call $1-800-44$-FLUKE, ext 33 for the name of your nearest Fluke distributor

Fluke 79 Series il \& 29 Series il

\$185*
4000 Count Digital Display (9999 in $\mathrm{Hz} \&-H-$)
63 segment Analog Bar Graph
0.3\% Basic DC Voltage Accuracy

Automatic Touch Hold ${ }^{\infty}$
Diode Test, Audible Continuily Beepeí Autoranging, Manual Ranging
Holster with Flex Stand ${ }^{\mathrm{TM}}$
Frequency Counter to over 20 kHz
Capacitance 10 pF to 9999; F
Lo-Ohms Range with Zero Calioration
Smoothing ${ }^{\text {TM }}$
700 Hours Battery Life (alkaline)
3 year Warranty
79/77/75/73/70 for measurements to $4800 \mathrm{~V}-\mathrm{A}$
29/23/21 lor higher energy measurements.
"Fluke 70 Series II suggested U.S. list prices range from $\$ 69$ to $\$ 185$
John Fluke Mig. Co., Inc. P. O. Box 9090 M/S 250E. Everett, WA 98206 U.S: 206-356-5400 Canada 416-890-7600 Other Countries 206-356-5500 © Copyright 1991 John Fuke Mig. Co. Inc. All reghts reserved. Ad no. 00091 Prices and specilications subject to change without not ice.

November 1991
 Randin

Vol. 62 No. 11

EUMH Trils

49 DOPPLER-ULTRASOUND HEART MONITOR

Use ultrasound to listen to your heart beat.
Joe Jaffe
58 MUSIC ON HOLD
Have your phone play FM music to callers waiting on hold.
Phil Hausman
67 MICRO MONITOR
Construction details for the logic analyzer kit.
Jim Cooke

71 874X PROGRAMMER

Use this easy program to experiment with 8789 H and 8749 H series of microcontrollers.
Fred Eady
84 SIMPLE FM TRANSMITTER
A one-evening project, even for beginners!

James A. Melton
 THEHTOLOGY

31 DIGITAL STORAGE OSCILLOSCOPES
 A look at digital storage oscilloscopes with bandwidths from $20-200 \mathrm{MHz}$.
 Stan Prentiss
 43 ANALOG SCOPES
 The new models offer features to rival their digital competitors! Jeff O'Neal
 64 AN INTUITIVE LOOK AT ELECTROMAGNETIC THEORY
 Learn how inductance is related to the magnetic field. William P. Rice

PAGE 49
Daplinelsins

6 VIDEO NEWS
What's new in this fastchanging field.
David Lachenbruch
22 EQUIPMENT REPORTS
Global Specialties PCI-DMM
PC-Based Multimeter.
78 HARDWARE HACKER
Electronic dog-tag contest, and more.
Don Lancaster

86 AUDIO UPDATE
Inside marketing information for the audio consumer. Larry Klein

94 COMPUTER

 CONNECTIONSA new wave in the computer industry. Jeff Holtzman

ATD MOTI

106 Advertising and Sales Offices
106 Advertising Index
12 Ask R-E
16 Letters
94 Market Center
28 New Lit
24 New Products
5 What's News

0. THil GOIN:

Digital storage oscilloscopes sold in today's market come in such a wide range of features and price tags that it's hard to determine what best suits your needs, while still fitting your budget. We'll help you make that decision by taking the guesswork out of deciphering such important terms as digital bandwidth, sampling rate, A/D conversion techniques, resolution, and accuracy of these unique instruments. You can use our information to find out what type of DSO is best for your testing needs. You'll also find a rundown of $20-500 \mathrm{MHz}$ DSO's currently available in the market place in a comprehensive chart on page 38 . Turn to page 31 and dare to venture into the world of DSO's!

COMTIG NTETT TOMH:

THE DECEMBER ISSUE GOES ON SALE NOVEMBER 5

BUILD AN ENERGY CONSUMPTION METER

Keep tabs on how much your appliances cost to run.

BUILD A HARMONIC DISTORTION ANALYZER Use your DMM as a display.

ELECTROMAGNETIC THEORY

We look at changing magnetic and electric fields.

BUILD THE BATTERY TOOL

Use your Ni -Cd batteries to the maximum efficiency.

VIDEO CAPTURE ON THE CHEAP

$\$ 99$ video capture works through a PC's parallel port.

[^0]Hugo Gernsback (1884-1967) founder

Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Brian C. Fenton, editor
Marc Spiwak, associate editor
Kim Dunleavy.
assistant technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman
computer editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch contributing editor
Don Lancaster contributing editor
Kathy Terenzi, editorial assistant
ART DEPARTMENT
Andre Duzant, art director
Injae Lee, illustrator
Russell C. Truelson, illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Janice Box.
editorial production
Karen S. Brown advertising production
Marcella Amoroso production assistant

CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro circulation director
Wendy Alanko circulation analyst
Theresa Lombardo circulation assistant
Michele Torrillo, reprint bookstore
Typography by Mates Graphics
Cover photo by Diversified Photo Services

Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 106.
Radio-Electronics Executive and Administrative Offices 1-516-293-3000.
Subscriber Customer Service: 1-800-288.0652.
Order Entry for New Subscribers: 1-800-999-7139.

The Audit Bureau
of Circuiation

Sweep Function Generator calar ilow \$19000
 Reg. $\$ 319.95$

Nodel FG-801
 - Selectable Wave

\& TLL Pulse

- 7 Frea Ranges
(0. 2 Hz to 2 MHz
- 'Sweep Ratio 100:1

ldeal for field applications! -Light weight •Portabe • Hand Held - Overload Protection - Test Leads

Model LCR-680
 Optional Carr

SCOPE Analog Lab sale.l10w 198°

Model SC-6000

-5 F-ea Ranges

- Variable Positive

Power

- Potentiometer

Feature Packed! HITACHI Oscilloscope
 Peg $\$ 615.00$ Model V-212 Dual Trace - DC to 20 MHz , 1 miv/div -6" Rectangular Screen

HITACHI Dual Trace Oscilloscope

 Now 559800
Model V-355

-19 Calibrated Sweeps - $6^{\prime \prime}$ CRT •Auto Focus PROBES INCLUDED!

Proto-Board Station Syecinal| \$29000

Model SC-9000A

- 3 wire AC Line Input - Function Cenerator - Tr ple Power Supply - 8 Logic LeD's

NTE specializes in "replacetivity", the science of getting things up and running again-fast! After all, downtime is castly, so 70 one can wait weeks on end for an OEM part to come in. With NTE, no one has to! One call gives you access -o $£, 550$ top of the line universal replacement semiconductors that are crass-referenced to more than 24C,000 original devices! ncluded in the NTE line are: jipular transistors, integrated sircuits, rectifiers, diodes, thyristors, optoelectronic devices, varistors, resistors, sapiacitors, and much, much more. All are backed by NTE's exclusive :wo-year warranty.
For your copy of the NTE Technical Guide contact your local NTE distrib ator, or simply fill in the coupon below and serd it to us today with a check or money order for $\$ 3.25$ each.

WHATS N:WS

A review of the latest happenings in electronics.

A step toward practical superconducting electronics

A process for making high-temperature superconducting devices, develoved by researchers at Bellcore (Livingston, NJ), could help pave the way for ultra-fast telecommunications switches and powerful computer circuits. The technique demonstrates the possibility of layering extremely thin films of superconducting and non-superconducting materials ky aligning atoms in a precise and predictable way, which vastly improves the critical electrical connections between the layers. According to Bellcore scientists, the key to the breakthrough lies in their success in making the molecular compounds with n each layer stand up vertically and line up end-to-end. Making the planes perpendicular to the surface of the chip allows for the best flow of electrical "supercurrents" through the various layers.

In most conventional superconducting devices, the planes lay flat and are stacked horizontally. The resulting Josephson junctions-the heart of superconducting elec-tron:cs-suffer from two shortcomings: The junctions between the layers appear to occur randomly, and there is little control over the location of those junctions on a chip. That makes them virtually impossible to

THIS EXPERIMENTAL PROTOTYPE of a high-temperature superconducting device, developed by researchers at Bellcore using an experimental process called pulsed excimer laser deposition, could be used to create new generations of powerful computerized switches.
use in circuits requiring precisely controlled electrical properties.

Bellcore's technique has shown the possibility of making Josephson junctions more controllable, with possible applications in IC's as highspeed electronic devices. The next step will be to improve the prototype device's properties, while uncovering the basic physics that govern the behavior of junctions made from the new superconductors.

Measuring thin-film surface area

A highly accurate method to directly measure the surface area of minute samples of porous, thin films has been patented by Sandia National Laboratories (Albuquerque, NM). The technique, an improvement on a decades-old method, has important implications for the microelectronics, optics, gas-separation, and solar-cell industries. The use of a solid-state sensor called a surface acoustic wave (SAW) device, provides measurements 10,000 times more sensitive than existing commercial instruments and can measure samples as small as $0.2 \mathrm{~cm}^{2}$

The classic surface-area measurement technique in use since the 1930's, known as the BET method (for its developers, Brunauer, Emmett, and Teller), is based on the premise that a porous material will absorb nitrogen gas in measurable quantities proportional to its surface area. The original method involved placing the material in a flask, weighing it, exposing it to nitrogen at its boiling point, and them measuring the flask again. The surface area of the sample could them be calculated using the weight difference and the surface area for one molecule of nitrogen. The BET technique is still used today for powders with large surface areas, but today's BET-measurement equipment cannot discern the small weight changes that result from materials with low total surface ares, such as most thin films.

SAW devices use transducers
lithographically patterned on a piezoelectric substrate to launch and detect acoustic waves that interact with solids, liquids, and gases on the SAW devices surface, providing information about the material's characteristics. When exposed to nitrogen gas, a thin film on the surface of the SAW device absorbs nitrogen and increases in mass, slowing down the acoustic wave as it travels along the surface. The slowing causes the oscillation frequency to decrease, and that change is recorded by a frequency counter. The film is exposed to various concentrations of nitrogen gas to obtain the data required to carry out the BET analysis. The SAW device can measure a mass change as small as 20 picogram (a picogram is one trillionth of a gram), as compared to a standard BET system. which can only measure mass changes of about 1 million picograms.

NARDA opposes universal scrambling of cable signals

The National Association of Retail Dealers of America (NARDA), in response to reports that cable companies in some areas are applying to local boards to be allowed to scramble all stations on their systems except those that can be picked up by regular antennas, passed a resolution opposing the universal scrambling of cable signals. According to NARDA president Ed Knodle, universal scrambling, which would require that all subscribers use cable-supplied boxes to pick up both basic and premium channels, "would render useless our best products, such as cable-ready TV's and VCR's, remote control, and all the new technologies which give consumers enhanced video, sound, and convenience." Knode, referring to universal scrambling as another way for the cable companies to generate revenues at the expense of manufacturers, retailers, and consumers, urges retailers "to be alert for this kind of attempt in their communities and to be ready to combat any such move."

R-E

- Super-premium CRT's. The next TV trend from Japan might be the deluxe or super-premium picture tube. Matsushita, which makes Panasonic TV's, has a major hit on the Japanese domestic market with a tube it calls "Gao," which loosely translates from the Japanese as "king of pictures" (Radio-Elec-
tronics. September 1991). Gao is available in Japan in 26-, 27-, 31 -inch sizes in top-of-the-line Panasonic sets. It is scheduled to appear momentarily on the American market, first in the 31 -inch, and then the 27 inch size. The major attribute of this new tube is its flatter faceplate, with sharp reduction in reflections. The front panel's light transmission on the 31 -inch set has been reduced to 33.5\% from Panasonic's standard 47.5%, and the tube's new electron gun and drive system maintain brightness and result in better focus.

It now turns out that Gao is only the forerunner of a rash of such supertubes. Not to be outdone. Sony has introduced the "Super Trinitron" in Japan, and the company said it will be offered in the U.S. as well. This new tube improves on Sony's vertically flat faceplate by sharply reducing the curvature of the horizontal plane. The tube will be offered in 27 - and 32 -inch versions, and Sony says that ambient reflections are virtually eliminated in the new tubes.

A third super-deluxe picture tube was introduced in Japan at our deadline by Hitachi. The 27 -inch version is claimed to have a 40% flatter screen than the same company's conventional tube. Further information on this and other competitive entries into the high-priced tube field are expected in the next few weeks.

- Widescreen programs coming? Widescreen TV sets using the 16:9 ratio, as opposed to the standard 4:3, have now been introduced in France, Germany, Italy, and Spain. As reported here (Radio-Electronics. October 1991), they're headed to the U.S. under such brands as JVC. Hitachi, Toshiba, and,
later, RCA. But what do you show on them? Well, you can cut the top and bottom off a standard TV picture to squeeze it into the new widescreen proportion, or you can show some of the few readily available letterbox laserdiscs and videotapes. Thomson Consumer Electronics, the parent of RCA and GE in the U.S., has started a campaign to convince movie companies, broadcasters, and cable companies to develop more widescreen programs in anticipation of the arrival to the new sets. For the time being, it is concentrating on the letterbox format, but it is also trying to persuade programmers to produce more shows in widescreen proportions for conversion to upcoming formats. Upcoming formats include Advanced Compatible TV (ACTV), a widescreen transmission system compatible with standard broadcasting, and widescreen VCR's, which are compatible with conventional programs as well as 16:9-aspect pictures (but not HDTV-see below). The latter has already been developed by JVC for the European market, and an American version will be marketed as soon as standards can be set.

It may or may not be the writing on the wall, but widescreen TV receivers suffered a setback this summer, when introduction by Thomson in England was postponed to next year. Among the reasons given were poor economic climate, a disagreement in the European community over standards for satellite broadcastingspecifically whether and when widescreen broadcasting will be re-quired-and the advisability of waiting for the 1992 Olympics (which will be broadcast in widescreen HDTV) to take advantage of the best promotional opportunities.

- HDTV VCR is set. Japanese companies have agreed on a standard VCR for recording and playing back high-definition pictures. To the surprise of some, it's not digital, but analog-a new analog system that is incompatible with VHS but resembles it in some respects. Hitachi,

Matsushita, and Sony are the originators of this system, which is designed for Japanese HDTV standards, but could also accommodate other HDTV specs. The system, which employs no data compression, uses half-inch metal-particle tape in a dustproof cassette slightly larger than the VHS version, and can record or play back for three hours. The system is said to be capable of storing five to six times the amount of information contained in a standard NTSC signal. However, if the United States adopts a digital HDTV system, you can bet there will be plenty of pressure to move home video recording into the digital age as well.

- Multimedia confusion. Interactive video, or multimedia, is the hot new product-at least theoretically. But it may be in for a battle of standards that will make the Beta-VHS debacle took like a friendly debate. For one thing, the two major consumer formats of 1991, Commodore's CDTV and Philips' CD-I, are completely incompatible. Then there are the multimedia systems designed as computer peripheries, such as Intel's DVI, along with other incompatibles.

But in the end, consumer multimedia may derive from video games, although there's plenty of confusion there, too. Although Philips will convert some of the hottest Nintendo games to CD-I, and Nintendo will design some more for the system, Sony-as we reported here-will be introducing its own CD-ROM based multimedia game format called Super Disc-incompatible with everything else, of course. Meanwhile. Sega and JVC have signed an agreement for a console combining a CD-ROM player with Sega's Genesis video game. NEC has been marketing a CD-ROM player for its TurboGrafX video game and will soon market a combination player. One software developer said he has already counted 12 mutually incompatible CD-based entertainment and information multimedia systems-and there are certain to be more on the way. $\quad \mathbf{R - E}$

RELEASE 2.2

RELEASE 3.0

A total computer simulated electronics laboratory including Free built-in Instruments and Components to build and test circuits

New, PROTOLAB' 3.0, a state of the art electronics lab for your PC, upgraded with the most requested enhancemenis. With Release 3.0 you still build, experiment and test actual circuits choosing from an unlimited n umber of passive components, just as the original Release. Then analyze your circuit with the built-in multimeter, oscilloscope or signal gene ator, but in a more advanced way.

PROTOLAE ${ }^{\text {ru }} 3.0$ includes color EGANGA graphics, quick function key menu selection, and on-line help, plus user preferences which customize your ptogram! Most importantly, Release 3.0 supports advanced components available with PROTOWARE ${ }^{\text {nu }}$ circuit modules.

PROTOWARE ${ }^{\text {mu }}$ circuit modules expand your lab into the world of diodes, transistors, and special function linear circuits. Each PROTOWARE ${ }^{\text {w }}$ disk, sold separately, covers a particular topic, such as transistor amplifiers. Circuits are presented in a "cook-book" format making it easy to learn and understand. Change component values, and analyze the circuit in the same way as always. Or "play" the Electronic Organ while you study it's operation. Plus, view the circuitin schematic or pictorial presentation. Imagine a PROTOBOARD ${ }^{\text {® }}$ layout to follow right on your computer screen!

In the future, your fun will continue as new PROTOWARE modules are introduced taking you into more advanced topics. Where else could you find thou sands of dollars worth of parts and instruments for the one low price of $\$ 129.95$? Order now for a limitedtime,
ruan

Industries company
and get three PROTOWARE"' modules included for just $\$ 20$ extra. That's a savines of nearly $\$ 40$!

PROTOLAB ${ }^{\text {mix }}$ Reiease 3.0*
$\$ 129.95$
*Requires IBMMPC, 5:2K RAM, ECAVCA Video, \& mouse. BONUS OFFER
3 PROTOWARE MODULES \$19.95 (Diodes, Transistors \& Electronic Organ)

GLOBAL SPECIALTIES

If You're Serious About a Future in Electronics, Ensure that Future with the Best Educational Training Available.

FRIE1

SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

Includes hundreds of the most frequently
used electronic symbols. Published by
CIE exclusively for our students and
alumni. Yours free when you
request a CIE Course Catalog.

I
f you want to learn about electronics, and earn a good income with that knowlecige then CIE is your best educaticnal value.

CIE's reputation as the world leader ir home study electronics is based solely on the success of our graduates. And we've earned that reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Clevieland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communication firms throughout the world

They'll tell you success didn't come easy...but, it did come....thanks to CIE. And today, a career in electronics offers more opportunities and greater rewards than ever before.

CIE's CDMMITTED TO BEING THE BE:ST....IN ONE AREA....ELECTRONICS.

 CIE isn't another be-everything-toeverybocly school. We teach only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than a 1,000 graduates each year, we're the largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly 60 years and we're the best at our subject ELECTRONICS ... BECAUSE IT'S THE ONLY SUBJECT WE TEACH!
CIE PROVIDES YOU WITH A LEARNING METHOD SO GOOD, IT'S PATENTED.

CIE's Auto-programmed lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-bystep and principle-by-principle. And while all CIE lessons are designed for independent study, CIE's instructors are personally available to assist you with just a tollfree call. The result is practical training... the kind of experience you can put to work in today's marketplace.

LEARN BY DOING...W/TH STATE-OF-THE-ART FACILITIES AND EQUIPMENT.

 In 1969, CIE pioneered the first Electronics Laboratory course and in 1984, the first Mircoprocessor Laboratory course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books, and lessons are included in your tuition. It's all yours to use while you study at home and for on the -job after graduation.
PERSONALIZED

TRAINING....TO MATCH YOUR BACKGROUND.
While some of our students have a working knowledge of electronics others are just starting out. That's why we've developed twelve career courses and an A.A.S. Degree program to choose from. So, even if your not sure which electronics career is best for you, CIE can get you started with

WHY CHOOSE CIE FOR YOUR TRAINING?

- 150,000 successful graduates from every country around the world.
- Only CIE rewards you for fast study. CIE offers an Associate Degree prograin based on actual study time used. The faster you complete your degree the less your overall tuition.
- State-of-the-art laboratory equipment is yours to keep and it comes assembled, ready for hands-on experiments.
- Approved for educational benefits under the G.I. Bill for veterans and other eligible persons.
- Upon graduation, CIE offers free preparation to pass the Certified Electronics Technician Exams.

core lessons applicable to all areas of electronics. And every CIE course you take earns you credit towards completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you thousands of dollars.

SEND TODAY FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

FINANCIAL AID AVAILABLE TO QUALIFIED INDIVIDUALS.

WIG-WAG CIRCUIT?

I have a 1982 Toyota and would like the hazard lights to light side to side rather than simply on and off. I've been told that the way to do this is with something called a "wig-wag" circuit-also known as a sequencer board. I'm not sure what this is and was wondering if you could help me.-R. Berkey, Seattle, WA

You can take some comfort from the fact that I, too, don't have any idea what a "wig-wag" circuit is and, as far as I'm concerned, sequencer boards are devices for electronic music. I think that the term "wig-wag" refers more to what the circuit has to do rather than specifying a particular collection of components or a particular circuit layout.

There are lots of ways to achieve the effect you're looking for, and which one you use depends on how slick you want it to be and how much work you're willing to do. All of them, however, presuppose that you have some way to isolate the left and right flasher lamps on your car since you have to be able to address each side of the car separately for any wiring scheme to work. If your car, like most other ones, uses the directional filaments for the flashers, you won't have any problem.

The easiest way to do the job is to use a double-pole, double-throw relay as shown in Fig. 1. You can try controlling the relay directly from the output of the flasher unit but I'm not sure whether your car has a mechanical or electronic flasher unit. If the unit is

FIG. 1-THE EASIEST WAY to make your flashers blink side-to-side is to use a dou-ble-pole, double-throw relay as shown here. You can control the relay directly from the output of the car's flasher unit if the unit is mechanical.

FIG. 2-YOU CAN DISREGARD the existing flashing unit and control the flasher bulbs using this circuit.
mechanical, you can wire the circuit as shown in Fig. 1-but don't forget to add the switch or you won't be able to turn the bulbs off.
If the flasher unit is electronic, you'll have to take the signal from farther down the line at a point where the existing circuit is designed to drive the filaments of the bulb. Once you find that point, the wiring to the relay will be the same as what is shown in Fig. 1.

A more exotic flashing alternative can be gotten by disregarding the existing flashing unit and controlling the bulbs completely by the electronics shown in Fig. 2. The 4017 is driven by a 555 clock whose frequency can be set with the potentiometer. Since the 4017 has ten outputs, you can assign each of the bulbs to an output and, by picking the output numbers and clock frequency carefully, you can flash the bulbs in pairs, all together, or even individually.

BLINKING BLOCKS

I have a PC-compatible computer with both a VGA and monochrome monitor connected to it. I need this setup because some of the software I use was only works on the monochrome screen. The problem I'm having is that when I run programs on the monochrome screen, it often leaves blocks of inverse and blinking video on the screen and the only
way I can get rid of it is to reboot the computer. What's causing this and is there anything I can do about it?-F. Geoffrey, New York, NY

The reason you're having a problem like this is due to a combination of things. Any one of them individually won't cause the problem that you are seeing but, when you put them together, the result is messed up video.

You didn't mention your exact video setup in your letter but l'd be willing to bet my new pair of white tennis shoes that you've got a sixteen-bit VGA card and a regular eight-bit mono card. And not only that, but l'll bet you've got your VGA card in a sixteen-bit slot and it's configured to run as a sixteen-bit device. That in itself wouldn't be too much of a problem, but the way the IBM video screen is set up along with how the display memory is organized is what causes your problem with getting the messed up video.

Each position on the screen requires two bytes of memory-one for the character and the other for its attribute. The first byte is what you type at the keyboard and the second is what determines either the color (for your VGA), or the highlighting and underlining (for your monochrome). Also, when you have a VGA card in your system, the computer will address the screen two bytes at a time. The first byte will be put on the

5821 NE 14th Ave. • Ft. Lauderdale, FL 33334 5% Ship/Handling (Max. \$10) U.S. \& Canada. 15% outside continental U.S.A. Visa and Master Card accepted.

- Full range -10 Hz to 3 GHz .
- LCD display (daylight visibility).
- True state-of-the-art technology with the high speed ASIC.
- NiCads \& Charger included.
- Ultra-high sensitivity. • 4 gate times.
- Extruded metal case. - Compatible with MFJ207.

Suggested options
TA100S: Telescoping Whip Antenna.................... \$ 12.
CC30 Vinyl Carry Case................................... \$ 14.
BL10: LED Backlight....................................... \$ 15.
BL28: El Backlight for use in roomlight and low light.
BG28: Bargraph Signal Level Indicator............. $\$ 100$.
TCXO 30: Precision $\pm 0.2 \mathrm{ppm} 20$ to $40^{\circ} \mathrm{C}$ temp. compensated time base......................... $\$ 100$.

Call for free catalog - Factory Direct Order Line:

Earn Your B.S. Degree in
ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 41st year, is highly experienced in "distance education"teaching by correspondence-through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-tounderstand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages - as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both waysto learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering Grantham College Road Slidell, LA 70460
lower eight bits of the bus and the second byte, the one controlling the attribute, will be put on the upper eight bits.

Since the monochrome card is an eight-bit device sitting in an eight-bit bus, it never sees the attribute byte. As a result, when DOS clears the monochrome screen or does some other activities, the data is sent to the monochrome card, but the attributes (sent at the same time as the data but on different data lines) never get there.

Programs that write directly to the monochrome screen can poke any attributes directly, but a more legitimate write to the screen through one of the DOS services won't work properly. The culprit in all this is the VGA card's BIOS since it loads itself in memory at boot up and replaces the standard DOS video handlers. The VGA BIOS checks to see if the VGA card is in a sixteen-bit slot (where it should be for maximum speed), and if it's found there, the data is sent out two bytes at a time. If the VGA card is found in an eight-bit slot, the BIOS will use only the lower eight bits of the bus and the monochrome card will then be addressed properly.

Some VGA cards allow you to use software to have them run as either eight- or sixteen-bit devices. Setting the card as an eight-bit device may solve some problems with particular software, but whether it will solve your problem depends on the nitty gritty of the VGA BIOS. I doubt if it will do anything but, since you can do it without using a screwdriver, it's easy enough to try-always try easy solutions first.

The next thing to do is call the VGA card manufacturer (best of luck on this one if you've got a generic clone card), and find out if they've got a fix for the problem. If they don't, you can eliminate the problem by moving the VGA card to an eight-bit slot. That will make the hassle disappear but you'll pay a price in the speed of screen stuff.

As a last resort, you can run the program "CLR-MONO.COM" which you'll find on the RE-BBS (516) 293-2283, 1200/2400, 8N1. It's a 34byte program that will reset all the monochrome attribute bytes to 07 H , the value needed for non-blinking, non-underlined, low-intensity. You can run it whenever you've got gar-
bage left on the monochrome screen after running your programs and it will clear it right up.

A FULL 360

I'm building a project that requires two potentiometers that can turn a full 360 degrees. 'The potentiometer has to return to zero resistance after it's been turned through a full rotation. l've checked everywhere but can't find anything like this. Do you know where I can get these or if they even exist at all?-H. Fennel, Bainbridge, NY

I'm sorry to say that I've never run across a potentiometer like the one you've described. However, if you absolutely must have a device like that, and can't find anything like it commercially, you should be able to make your own. You'll have to do some surgery on a standard potentiometer, but certainly nothing that requires years of medical school.

If you bend back the tabs holding a standard potentiometer together, you'll find that there are small pieces of metal that act as the stops for each end of the potentiometer's wiper. If you bend these out of the way, or just grind them off completely, the potentiometer will rotate through a complete 360 degrees. You may still have a problem, however, because the new area being swept by the wiper will be an open circuit since there's nothing that is electrically connected to either end of the potentiometer's resistive material.

You can try painting the area with some conductive paint, India ink, or even gluing down a piece of copper foil. If you do this, be sure to leave a slight gap on one side between the material you add and the end of the potentiometer's original resistive element while making contact on the other end. If you connect it to both ends you'll be putting the new material in parallel with the original material and the value of the potentiometer will change and the sweep will be extremely non-linear. If you use conductive paint or copper foil you'll have a dead short.

Having a small gap will leave you with a dead spot which may be unsuitable for your application. If this is a problem that you can not deal with, you'll have to contact one of the manufacturers and price out the cost of custom parts.

R-E

TAKE ADVANTAGE OF CUTTING－EDGE DLDCTRONICS KNOW－HOW WITH TAB BOOKS

DAT：The Complete Guide to Digital Audio Tape by Delton T．Horn Get a complete explanation of what DAT is，how it works，and how it differs from competing analog and compact disc technology．Horn takes you through the basics of DAJ technology，the legal issues surrounding it，explains in－depth maintenance and gives you insight into the future of DAT．
256 pp， 98 illus．\＃3670H \＄23．95

TROUBIESHOOTING AND REPAIRING PERSONAL COMPUTERS－2ND ED．

 by Art Margolisfull of information．．．well written，easy to read，and liberally illustrated． －Online Today Use this all－in－one volume to service 80386 and 80486 PCs and to disassem－ ble，maintain，and test BM $^{\top}$ ，Apple ${ }^{\oplus}$ II，Macintosh ${ }^{\oplus}$ ，Amiga ${ }^{\top M}$ ，and Commo－ dore ${ }^{\text {TM }}$ FCs． 544 pp， 450 illus．\＃3677H $\$ 34.95$

ELECTFONIC POWER CONTROL by iving M Gotthieb

From audio power ICs to zero－voltage switching，this valuable guide supplies you with practical approaches to analysis，troubleshooting，and implementa－ tion of new solid－state devices． 272 pp ， 197 illus． $73837 \mathrm{H}, \mathbf{\$ 2 7 . 9 5}$

MAINTAINING AND REPAIRING VCRs－ 2 nd Ed．by Robert L．Goodman
gives all the necessary background ．for learning the art of troubleshooting popular brands．＂
－Electronics for you
Use this revised bestseller to maintain and repair VHS HQ and camcorders． 352 pp．， 370 illlus．＂ $3103 \mathrm{H} \$ 27.95$

THE MASTER IC COOKBOOK by Clayton L．Hallmark and Delton I．Horn Get vita data on the world＇s most popular－and widely used－integrated cir－ cuits．You＇ll quickly locate the specifications for TL and CMOS products， memories，operational amplifiers，if amplifiers，audio amplifiers，and other linear devices．Includes pinouts，block diagrams，temperature ranges，and more 576 pp．， 390 illus．\＃3550H $\$ 34.95$

IMPROYING TV SIGNAL RECEPTION：Mastering Antennas and Satellite Dishes by Dick Glass
Tap into this fast－growing market with practical solutions to common and not－ so－common problems．You get the three basic reception set－ups used for transmilting to television sets，plus reference charts on carrier and satellite station rumbers，and even procedures for distributing signals to numerous sets． 192 pp， 150 illus．／2970P $\$ 16.95$

BUILD YOUR OWN POSTSCRIPT© LASER PRINTER AND SAVE A

BUNDLE by Horace LaBadie
Build a laser printer from scratch or convert a stock canon $C X$ or $S X$ laser engine io full PostScript capabilities．Find out everything you need to know about laser printer technology：how it works，what parts to use，where to buy them at the best possible price，and how to put them together．
144 pp ．， 70 illus．＊3738H \＄26．95
DESIGh \＆BUILD ELECTRONIC POWER SUPPLIES by Iwing M．Gottieb Find out how new high－frequency devices are reducing costs and dramatically improvirg power supply efficiency，reliability，compactness，and volume．You＇ll also disciover new advances in electronic and synchronous rectification，switch－ ing，sine－wave power supplies，current－mode IGBI power switches，and more． $180 \mathrm{pp}, 98$ illus． $\mathbf{7} 3540 \mathrm{H} \$ 26.95$

SECRETS OF RF CIRCUIT DESIGN by Joseph ）．Carr
Design and build your own radio frequency amplifiers，preselectors，signal gen－ erators，inductor coils，antennas，microwave circuits，and other devices．You＇ll discovel the basics of operation，the proper use and repair of components in RF and the principles of low－frequency to microwave radio propagation．Includes experiments to help you explore such problems as electromagnetic interference 416 pp．， 175 illus． 13710 H 532.95

BUILD YOUR OWN 80386 IBM ${ }^{*}$ COMPATIBLE AND SAVE A BUNDLE

 by Aubray PilgrimHave the power of a PS／2 Model 80 without the cost．This guide gives you easy－to follow instructions for assembling an 80386 computer that will accom－ modate OS／2 or MS－DOS 4．0．Or upgrade a PCXT／AT or compatible to an 80386 ． 232 pp．， 84 illus．． $3131 \mathrm{H} \$ 27.95$

OLD TIME RADIOS！Restoration and Repair by Joseph J．Carr Troubleshoot and repair all kinds of antique and classic radios．This how－to guide gives you detailed instructions and schematics plus vacuum tube pinout diagramis．Inciudes a complete classic－radio troubleshooting course，a capaci－ torfresistor color code chart for identifying radio parts，and practical theory 256 pp ， 247 illus．$/ 3342 \mathrm{H} \$ 25.95$

THE ELECTRONICS WORKBENCH：Tools，Testers，and Tips for

 the Hobbyist by Delton T．HornDesign a permanent or portable workbench that fits your needs．Horn gives you an in－depth look at each major category of test instrument and explains the characteristics and power capabilities of multimeters，oscilloscopes，cap－ acitance and frequency signal generators，signal tracers，semiconductor testers， and digital test equipment． 256 pp．， 125 illus． $43672 \mathrm{H} \$ 28.95$

THE ENCYCLOPEDIA OF ELECTRONIC CIRCUITS－VOL． 1

 768 pp，$I_{r} 762$ illusTHE ENCYCLOPEDIA OF ELECTRONIC CIRCUITS－VOL． 2
744 pp．， 728 illus
＂Thesel references would be a valuable asset to any circuit or hobbvist
－Art Kleiman，Editor，Radio Electronics
Order Both and Save！M5376C $\$ 49.95$（regularly $\$ 59.90$ ）
Save Over \＄20．00！
ENCYCLOPEDIA OF ELECTRONIC CIRCUITS－VOL． 3
by Rudolf F．Grat
This comprehensive guide can help you research a particular project and find answers to specific probiems，or dream up new ideas．Build alarm and security systems ．．．smoke，moisture，and metal detectors ．．．computer，fiberoptic，and laser circuits ．．．capacitance，current，voltage，and frequency meters ．．．power supplies．．．fillers and oscillators．．．and much more．
832 pp．， 1000 illus． 3348 H \＄39．95（regulariy $\$ 60.00$ ）
Get all three comprehensive encyclopedias and save $\$ 44$ ！ Only $\$ 75.90$（\＃5460C）

Save $\$ 10$

THE CET STUDY GUIDE－2ND ED．by Sam Wilson
THE CET EXAM BOOK－2ND ED．by Ron Crow and Dick Glass
＂Whether you＇re just starting out in the electronics service field or you＇re an experienced technician．．．this is the ideal sourcebook to prepare you．＂
－Hands－On Electronics
Pass the Associate or Journeyman exams with these guides
Buy both books and save $\mathbf{1 0 \%}$（regularly $\$ 29.90$ ）\＃5447C $\$ 26.90$
To Order Call Toll Free：1－800－822－8158
（in PA，AK，and Canada call direct 1－717－794－2191）
FAX Orders：1－717－794－2080，or mail coupon to： TAB Books，Blue Ridge Summit，PA 17294－0840

PHONE-COM SOURCE CHANGE

The parts source listed for the Phone-Com ("Use Your Telephones as a Home Intercom System," Ra-dio-Electronics, May 1991) is no longer valid. Please address all or-
ders, inquiries, or problems to DMP Electronics, P.O. Box 50224, Phoenix, AZ 85076 (602-460-0127). All parts are in stock for immediate delivery. I apologize for any inconvenience FRANK POLIMENE

Kepro Gets You Started! With Complete PCB Kits.

Get that electronic construction project started with professionalquality P PB's that you can make at home. Kepro makes it easy to produce your own etched circuit boards with all the quality materials and step-by-step instructions you'll need. Hobbyists really go for our complete kits for:

- Dry film photoresist
- Resist etched circuits
- Art layout
- Photo reversing
- Screen printing
- Nameplates
- And more

All Kepro products are easy to use and come with an unconditional guarantee. Call us for more information and to get your FREE booklet on how you can get started making your own PCB's with Kepro products.

Kepro Circuit Systems, Inc.

CABLE TV CONVERTERS AND DE－ SCRAMBLERS SB－3 $\$ 79.00$ TRI－BI $\$ 95.00$ MLD－\＄79．00 M35B \＄69．00 DRZ－DIC $\$ 149.00$ ．Special combos available We ship COD．Quantity discounts．Call for pricing on other products．Dealers wanted．FREE CATA－ LOG．We stand behind our products where others fail．One year warranty．ACE PROD－ UCTS．P．O．Box 582，Saco，ME 040721 （800）234－0726．

5 MINUTE ASSEMBLY！MONEYBACK GUARANTEE！Attach the VT－75 chip to any 3 V － 12 V battery and you have the most power－ ful miniature transmitter you can buy anywhere．Tiny Law Enforcement grade de－ vice allows you to hear every sound－－even footsteps－over 1 mile away on any FM radio or wideband scanner． $80-130 \mathrm{MHZ}$ ． 100 mW output！VT－75 microtransmitter complete $\$ 49.95+\$ 1.50$ S \＆H．Visa，MC，MO．COD＇s add \＄4．00．DECO INDUSTRIES，Box 607， Bedford Hills，NY 10507．1－800－759－5553． CIRCLE 127 ON FREE INFORMATION CARD

FREE CATALOG OF TEST INSTRUMENTS \＆Tools is packed with thousands of products for testing，repairing，and assembling elec－ tronic equipment．Featured are brand name instruments such as FLuke，Tektronix，Lead－ er，Weller，3M plus many more．Also included are DMM＇s，hand tools，power supplies，tool kits，test equipment，static supplies plus many other new products．Orders placed by 4 PM are shipped before we go home！ CONTACT EAST， 365 Willow St．，No．An－ dover，MA 01845．（508）682－2000，Fax： （508）688－7829．

CIRCLE 55 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

－ $6 \times$ rate $\$ 940.00$ per each insertion
－Fast reader service cycle
－Short lead time for the placement of ads．
－We typeset and layout the ad at no additional charge．

Call 516－293－3000 to reserve space．Ask for Arline Fishman．Limited number of pages available．Mail materials to mini－ADS，RADIO－ELECTRONICS，500－ B B－County Blvd．，Farmingdale，NY 11735

FAX：516－293－3315

APPLIANCE REPAIR HANDBOOKS－13 volumes by service experts；easy－to－ understand diagrams，illustrations．For major appliances（air conditioners，refrigerators， washers，dryers，microwaves，etc．），elec housewares，personal－care appliances Basics of solid state，setting up shop，test instruments．\＄2．65 to \＄5．90 each．Free brochure．APPLIANCE SERVICE，PO Box 789，Lombard，IL 60148．1－（312）932－9550．

CIRCLE 84 ON FREE INFORMATION CARD

SWEEP／FUNCTION GENERATORS WIN－ TELLIGENT 100 MHz FREQUENCY COUN－ TER－Sine，Square，Triangle，Ramp，DC \＆ Sync．TTL outputs．Seven freq．ranges： 2 Hz to 6 MHz （FG－506）； 2 Hz to 13 MHz （FG－513）． Intelligent 100 MHz frequency counter with period mode．Continuous，Triggered，Gated， Clock and extra frequency modes．Lin／Log sweep．Adjustable duty cycle／symmetry Period and frequency readout（4－digit resolu－ tions）．TCXO with $1 \mathrm{ppm} / \mathrm{yr}$ ．aging rate（op－ tional）．FG－506－\＄695．00；FG－513－ \＄1295．00．AMERICAN RELIANCE INC．－ 9952 E．Baldwin Place，El Monte，CA 91731. （800）654－9838．

CIRCLE 177 ON FREE INFORMATION CARD

THE MODEL WTT－20 IS ONLY THE SIZE OF A DIME，yet transmits both sides of a tele－ phone conversation to any FM radio with crystal clarity．Telephone line powered－never needs a battery！Up to $1 / 4$ mile range．Adjusta－ ble from 70－130 MHZ．Complete kit \＄29．95 $+\$ 1.50 \mathrm{~S}+\mathrm{H}$ ．Free Shipping on 2 or more！ COD add \＄4．Call or send VISA，MC，MO． DECO INDUSTRIES，Box 607，Bedford Hills，NY 10507．（914）232－3878．

CIRCLE 127 ON FREE INFORMATION CARD

FREE CATALOG！ELECTRONIC TOOLS \＆ TEST EQUIPMENT．Jensen＇s new Master Catalog，available free，presents major brand name electronics tools，tool kits，and test in－ struments，plus unique，hard－to－find products for assembly and repair and custom field ser－ vice kits available only from Jensen．All fully described and illustrated．Enjoy free technica support and rapid，post－paid delivery any－ where in the Continental USA．JENSEN TOOLS INC．， 7815 S．46th St．，Phoenix，AZ 85044．Phone：602－968－6231；FAX： 1－800－366－9662．
CIRCLE 115 ON FRRE INFORMATION CARD

No other training to troubleshoot computers

Only NRI walks you through the step-by-step assembly of a powerful 386sx computer system you train with and keep-giving you the handson experience you need to work with, troubleshoot, and service today's most widely used computer systems. Only NRI gives you everything you need to start a money-making career, even a business of your own, in computer service.

No doubt about it: The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. Only NRI, the leader in career-building at-home electronics training for more than 75 years, gives you that kind of practical, real-world computer servicing experience.

Indeed, no other training-in school, on the job, anywbere-shows you how to troubleshoot and service computers like NRI

Get inside the West Coast 386sx computer system... and experience all the power and speed of today's computer technology!

DIAGNOSTIC HARDWARE AND SOFTWARE
RA.C.E.R plug in diagnostic card and QuickTech menudriven software, both from Ultra-X, give you hands-on experience bith todays professional diagnostic tools

DISCOVERY LAB
Complete breadhoarding system
lets you design and modify
circuits, diagnose and repair faults

LESSONS

Clear, illustrated texts
build your understanding of computers step by step

MONITOR

High-resolution, nonglare, 14" TlL monochrome monitor with tilt and swive! basc

DIGITAL

LOGIC PROBE

Simplifies analyzing digital circuit operation
DIGITAL
MULTIMETER
Professional test instrument for
quick and easy measurements
SOFTWARE
Train with MS DOS,
GW-BASIC. and popular
Microsoft Works
applications software

With NRI's exclusive hands-on training, you actually build and keep the powerful new West Coast $386 \mathrm{sx} / 20 \mathrm{MHz}$ mini tower computer system.

You start by assembling and testing your computer's 101-key "intelligent" keyboard, move on to test the circuitry of the main logic board, install the power supply and 1.2 meg high-density floppy disk drive, then interface your high-resolution monitor.

What's more, you now go on to install and test a powerful 40 meg IDE hard disk drive-today's most-wanted computer periph-eral-included in your course to

dramatically increase your computer's data storage capacity while giving you lightningquick data access. But that's not all!

Professional diagnostic hardware and software makes troubleshooting fast and accurate

Your NRI training now includes a remarkable diagnostic package that allows you to quickly locate and correct defects in IBM XT, AT 80286/80386, and

shows you h and service like NRI!

NEW! 70 MEG HARD

DISK DRIVE!

You inatall this 40 meg IDE hard disk drive internally, for greater data storage capacity and da a access speed

NEW! $386 \mathrm{sx} / 20 \mathrm{MHz}$ MINI TOWER COMPUTER! Teatures 32 -bit 80386 sx CPU, 1

NRI gives you the confidence and the know-how to step into a full-time, money-making career as an industry technician, even start a computer service business of your own!

No experience necessary... NRI builds it in

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff, always ready to answer your questions and give you help whenever you need it.

FREE catalog tells more. Send today!

Send today for NRI's big, free catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in TV/video/audio servicing, telecommunications, industrial electronics, and other high-growth, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.
compatible computers
You'll use your Ultra-X QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, serial communications ports, video adapters, and floppy and hard disk drives. You'll go on to use your R.A.C.E.R. diagnostic card, also from Ultra-X, to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips.

This ingenious diagnostic package is just one more way

EOUIPMENT RIFDRTS

Global Specialties PCI-DMM PC-Based Multimeter

There is no turning back the clock: PC-based test equipment is here to stay. The reason for that is flexibility of the sort available from the PCI -DMM from Global Specialties (70 Fulton Terrace, New Haven, CT 06512).

The PCI-DMM is a plug-in card and software package for your IBM PC or compatible computer. In essence, it turns your PC into a full-featured, configurable DMM with such additional features as data storage and graphics.

The $\mathrm{PCl}-\mathrm{DMM}$ package consists of the board itself, test leads and probes, a program disk, and a user manual. The board fits into a fulllength slot in any PC, XT, AT, or ' 386 machine. The rear "panel" contains banana jacks for the positive and common test leads, and a 9-pin "D" jack for connection to a "scanner," which we'll discuss later. The test leads are about five feet long, (which is necessary because they have the get around the computer) and include two kinds of probe attachments. The software disk includes executable files and device drivers, but also includes programming examples in the C language to assist those who want to customize the operation of the $\mathrm{PCI}-\mathrm{DMM}$. The manual is decidedly low-tech; illustrations hardly exist and pages are printed on one side only. But it's written well enough that its appearance isn't a hindrance.

Installing the PCI-DMM

The basic system requirements for
the $\mathrm{PCl}-\mathrm{DMM}$ are an IBM XT or better running DOS 3.0 or higher, with 640 K of RAM, and EGA or VGA graphics (color or monochrome). A mouse is supported, and, although it makes using the DMM much easier, it's not essential

The biggest problem with installing the board in the PC is choosing the right slot-the input cables have to wrap around front somehow, without getting tangled in other wiring. The only other concern is the base address where the board will reside and the interrupt it will use. Jumper pins make it easy to select an address and interrupt that will be free of conflicts with other boards.

Once the board is in place, the software must be installed and configured to your machine. It's a reasonably simple, automated process.

Using the DMM

Once you run the software, the screen of your PC is turned into the front panel of a benchtop DMM with chart recorder. Three-dimensional "buttons" are used to select all functions.

At the top center of the "front panel" is is a $41 / 2$-digit (20,000 -count) display. Below that is a row of function keys (voltage, current, resistance, capacitance, and decibels relative to 1 mW into 600 ohms). A range selector is located to the display's left. Below that are three toggling mode switches (AC/DC, absolute/relative. and fast/slow). A touch-hold button and "power switch" (which lets you
exit the software) round out the DMM controls.

The other controls on the virtual front panel are not commonly found on DMM's; they're used to control the chart-recorder functions. Eight pens are available to plot data to the "roll paper," and the time between samples can be varied from $0.5 \mathrm{sec}-$ onds to almost ten hours.

The chart paper isn't there just to add a bit of pizzaz to the DMM. It's actually where the real benefits of PC-based instruments show up. Each chart is stored on disk, and can be replayed at a user-selectable speed to the screen or to a dot-matrix printer. Stored data is also available in delimited ASCll files that can be imported into databases, spreadsheets, word processors, and other software.

For low cost ATE (automatic test equipment), a multi-channel scanner unit is available to provide 8 inputs to the main system board. Although programming the $\mathrm{PCI}-\mathrm{DMM}$ for ATE isn't a simple matter, it's certainly possible thanks to the documentation that's included. The supplied device driver lets external software directly access the functions of the board. Sample "C" routines show how to control and switch the DMM's functions and internal relays.

The $\mathrm{PCl}-\mathrm{DMM}$ is protected from overload by self-resetting thermal fuses; conventional fuses protect against worst-case overloads. Your computer is isolated from inputs up to 500 volts.

We experienced no problems or difficulties with the PCI-DMM, and found it to operate as claimed by Global Specialties. The software is simple to use - at least with a mouse.

Since the Windows environment is starting to become the de facto standard for PC-based instrumentation, we would have preferred to see software that ran under Windows. Despite that shortcoming, we think that the $\mathrm{PCI}-\mathrm{DMM}$ is a strong product. Its \$795 price should make it attractive to engineers and technicians involved in quality assurance and automatic test.

R-E

48 Hour ELENCO \& HITACHI PRODUCTS
 SHIPPING AT DISCOUNT PRICES

Hitachi RSO Series

(Portable Real-time Digital Storage Oscilloscopes) VC-6023-20MHz, $20 \mathrm{MS} / \mathrm{s}$ \qquad \$99/mo"
VC-6024-50MHz, 20MS/s \qquad $\$ 120 / \mathrm{mo}^{\circ}$ VC-6025-50MHz,20MS/s \square $\$ 135 / \mathrm{mo}^{\circ}$ $\mathrm{VC}-6045-100 \mathrm{MHz}, 40 \mathrm{MS} / \mathrm{s}$
\qquad \$125/mo
VC-6145-100MHz, $100 \mathrm{MS} / \mathrm{s}$ $\$ 200 / \mathrm{mo}^{*}$
RSO's from Hitachi feature roll mode, averaging. save memory, smoothing, interpolation, pretriggering, cursor measurements. These scopes enable more accurate, simpler observation of complex waveforms, in addition to such functions as hardcopy via a plotter interface and waveform transter via the RS-232C interface. Enjoy the comfort of analog and the power fo digital.
20MHz Elenco Oscilloscope

- 2 P-1 Probes

LEASING AVAILABLE
For all HItachl Scopes - Call for delalis
Based on 24 months except $\mathrm{V}-1150, \mathrm{VC}-6045, \mathrm{VC}$ -
6145 (36 months)

Hitachi Portable Scopes

DC to $50 \mathrm{MHz}, 2$-Channel, DC offset function, Alternate magnitier function V-525 - CRT Readout, Cursor Meas. _ $\$ 1,025$ V-523-Delayed Sweep \qquad $\$ 1.025$
$\$ 995$ V-522 - Basic Model \qquad $\$ 995$
$\$ 85$
V-422. 40 MHz \qquad
\qquad $\$ 795$ V-223-20Mhz delayed sweep $\$ 695$ V - $212 \cdot 20 \mathrm{MHz}$ \qquad \$425

HITACHI COMPACT SERIES SCOPES
This series provides many new functions such as CRT Readout, Cursor measurements (V-1085/1065/665), Frequency Ctr (V-1085), Sweeptime Autoranging, Delayed sweep and Tripper Lock using a 6 -inch CRT. You don't feel the compactness in terms of performance and operation.
V-660-60MHz, Dual Trace \qquad $\$ 1.195$
V-665-60MHz, DT, w/cursor
\qquad $\$ 1,425$ -1060-100MHz, Dual Trace V-1065-100MHz, DT, w/cursor \qquad $\$ 105 / \mathrm{mo}^{\circ}$ V-1085-100MHz, QT, w/cursor \qquad \$125/mo V-1100A -100 MHz , Quad Trace $\$ 125 / \mathrm{mo}^{\circ}$
$\$ 115 / \mathrm{mo}$ $\$ 115 / \mathrm{mo}^{\circ}$

Elenco 35 MHz Dual Trace

Good to
50 MHz $\$ 495$ MO-1252

- High luminance 6° CRT -1mV Sensitivity - 6KV Acceleration Voltage - 10ns Rise Time - X-Y Operation - Z Axis - Delayed Triggering Sweep

All scopes include probes, schematics, operators manual and 3 year (2 yrs for Elenco scopes) world wide warranty on parts \& labor. Many accessories available for all Hitachi scopes. Call or write for complete specifications on these and many other fine oscilloscopes.

$B+K$ TEST EQUIPMENT All Models Available Call for special price	Digital Capacitance Meter CM-1550B				000 Multimeter with Transistor Tester			FLUKE MULTIMETERS All Models Available Call for special price	
Fully regulated and s	5.95 -20V@ 2A 12V@1A $5 V @ 3 A$ $.5 V @ .5 A$ protected	$\left[\begin{array}{ll} 50 & 9 \\ 1 & 9 \end{array}\right.$ All the desired featu Features short cir	Y XP-620 Assembled \$69 KIt $\$ 45$ 2 to 15 V @ 1 A , -2 to-15V @ 1A or 4 to 30V @ +A) and 5 V @ 3 A Joing experiments. action, all supplies		/FM Tran Radio Training Model 14 Transistors Makes a great s	nsistor Kit Course AMFM 108 \$26.95 s. 5 Diodes school project			True RMS 4 1/2 Digit Multimeter M-7000 \$135 05\% DC Accuracy 1\% Resistance with Freq. Counter and Deluxe Case

 n Generator with Freq. Counter
$\$ 249$
Sine, Square, Triangle Puilse, Ramp, . 2 to 2 MHz Freq Counter . $1-10 \mathrm{MHz}$

GF-8015 without Freq. Meter $\$ 179$.
Learn to Build and Program Computers with this Kit Includes: All Parts, Assembly and Lesson Manual Model MM-8000 \$129.00

[^1]Robotics Kit for above (MM8010) 71.95

UPS Shipping: 48 States 5%
 (\$3 Min \$10 Max) Shipping
 IL Res., 7\% Tax FAX: 708-520-0085

C \& S SALES INC.
1245 Rusewomel. Deerfiedd. IL G101E (810) $292-7711$ (7181 541 -(1711)

XK-500 DIGITAL / ANALOG TRAINER

A complete mini-lab for buliding, testing, prototyping onalog and digital circults Elenco's Digtal / Analog Trainer is specially deslgned for school projects, with 5 built-In power supplies. includes a function generator with continously variable. sine, triangular. square wave forms. All power supplies are regulated and protected against shorts.
POWER SUPPLIES

- Variabia Power Supply
- +1.25 10 20 VDC
(4) 5 Amp

- $-2510-20 \mathrm{VDC} @ .5 \mathrm{Amp}$ ($-1.25: 0-1$ SVOC © 1 Amp) - +12 VOC@ 1 Amp - 5 VDDC @ 1 Amp - 3ovac conler radped (;3) 1sVAC at 1 Amp
ANALOG - SECTION - Function Generator S - Frequency adustab from 1 to 100 KHz - Fine traquency adust - Amoitiude adjust - DC ortset - Modulaion FM-AM digital. SECTION - Eight dala switches - Two no bounce logic swiches - Two no bounce logic switches - Elpmied racous 10 , cumb Clook requency 10 : 00 KHz Clock ampltuda 5VPP square wa BREADBOARDS 2 Breadboards, each conta

NEW PHODUCTS

Use the Free Information Card for more details on these products.

ALL-FORMAT VCR ANA-
LYZER. A companion to Sencore's VA62A Universal Video Analyzer, the VC93 All Format VCR Analyzer is designed to isolate all video, audio, and servo problems in the playback and record circuits of VCR's and camcorders. Together, the two instruments completely analyze VCR's from antenna to line output. The VC93's servo tests allow the user to automatically check out a VCR without removing the VCR' cover. Those tests eliminate the confusion of. whether a bad playback symptom is luminance or servo related, and isolate servo problems to the capstan or cylinder. Head-substitution signals positively isolate video-head defects

CIRCLE 16 ON FREE INFORMATION CARD
from other circuit problems. Phase- and chromalocked drive signals troubleshoot all VCR stages from the heads to the outputs; and the VC93 even troubleshoots defects in stereo hi-fi audio circuits. It supports VHS, Super VHS, VHS-C, Super VHS-

C, Beta, Super Beta, 8 mm , Hi-8, U-Matic, and U-Matic SP VCR and camcorder formats.

The VC93 all-format VCR analyzer costs \$2995.-Sencore, Inc. 3200 Sencore Drive, Sioux Falls, SD 57107; Phone: 1-800-SENCORE.

LAN-GRADE SURGE PROTECTOR. Harsh local area network (LAN) environments demand surge and EMI/RFI noise sup. pressors to protect the high-performance hardware and high-speed data communications links. The

> CIRCLE 17 ON FREE INFORMATION CARD

LAN Pro S20LP from

 Proxima supplies such protection by eliminating highfrequency noise and highenergy surges and spikes. A special filter removes 99\% of all EMI/RFI noise from 500 kHz to 100 MHz ,which is particularly important for LAN communications that run between 2.5 and 20 -plus MHz . A "super high energy dissipation". (SHED) circuit provides an energy dissipation capability of 480 joules and can withstand three times the number of high-energy (IEEE 5871980 categoryB) surges as ordinary com-puter-grade surge suppressors. The LAN Pro S20LP also features a polarity/ground fault indication for additional security, since LAN's are particularly vulnerable to ground faults. A Lifetime Equipment Protection Policy guarantees the replacement or repair of any computer equipment that is damaged due to power transients while properly connected to the S20LP.

The LAN Pro S20LP has
a list price of \$79.95.-
Proxima Corporation, 6610 Nancy Ridge Drive, San Diego, CA 92121; Phone: 619-457-5500.

POCKET-SIZED FREQUENCY

COUNTER. According to Startek International, their model 3500 frequency counter is the smallest

CIRCLE 18 ON FREE INFORMATION CARD
available unit to offer the ability to find and measure frequencies from 10 Hz to 3.5 GHz . The $3.4 \times 3.8 \times 1$ inch instrument weighs about 9 ounces and fits in a shirt pocket. It features an 8 -digit red LED readout, a display-hold function, a one-megohm input impedance from 10 Hz to 12 MHz , and a 50 -ohm input impedance from 10 MHz to 3.5 GHz . The user has a choice of three gate times, providing a maximum resolutions of 0.1 Hz (to 12 MHz) and 10 Hz (to 3.5 GHz). Internal $\mathrm{Ni}-\mathrm{Cd}$ batteries provide three to five hours of portable operation. With the supplied 110-VAC adapter/ charger, the 3500 can be used while recharging. It can also be powered by an optional 12-to-9-volts DC automobile adapter. Other options include various probes and antennas and a black-vinyl zipper case.

The 3500 frequency counter costs \$250.Startek International Inc., 398 NE 38th Street, Fort Lauderdale, FL 33334; Phone: 305-561-2211 (for orders only: 800-638. 8050); Fax: 305-561-9133.

DUAL-WATTAGE SOLDER-

 ING STATION. Delivering professional results at a hobbyist price. Ungar's UTC SS soldering station is well suited for electronickit assembly and the repair of electronic devices. Its dual-wattage control allows the user to select the proper heat for the job: The low setting, 21 watts, heats to $650^{\circ} \mathrm{F}$ and the high setting, 35 -watts, heats to $850^{\circ} \mathrm{F}$. A fully grounded tip ensures safe use with sensitive components on printed cir-

CIRCLE 19 ON FREE INFORMATION CARD

cuit boards，including sur－ face－mount devices．The all－in－one unit includes a power base with built－in controller，a dual－wattage soldering iron with cool， anti－slip handle；and a coil－ spring iron holder with a ce－ ramic mouthpiece that pro－ vides a safe standby position for the hot iron． The UTC SS also features a conveniently located， contamination－free sponge that allows the user to maintain a clean，well－tin－ ned tip．The unit comes with a general－purpose sol－ dering tip，and can be used
with 12 different standard－ line， $1 / 4$－inch，thread－in tips from Ungar．An optional adapter（model 100）allows the use of a wide selection of Ungar＇s 1－8－inch tips．

The UTC SS soldering station has a suggested list price below $\$ 60$ ．－Ungar， Division of Eldon Indus－ tries，Inc．， 5620 Knott Ave－ nue，Buena Park，CA 90621 ；

Phone 714－994－2510；Fax 714－523－7790．

CONTINUOUS－ROLL COM－

 PUTER PAPER．Anyone who＇s ever printed out a computer－generated ＂Happy Birthday＂banner， only to have it tear along the perforations when try－ ing to hang it up，will appre－ ciate Banner Band continu－ ous－roll computer paper from Micro Format．The pa－ per，manufactured from high－grade 20 －pound bond， has $1 / 2$－inch micro－perf mar－ gins and no cross perfora－

CIRCLE 20 ON FREE INFORMATION CARD

tions．It is available in white and in assorted pastels and fluorescent colors，with borders or over－all designs （hot－air balloons and holi－ day motifs），and in＂Ban－ nerBrite＂parchment．It comes in two widths to ac－ commodate both standard－ and wide－carriage printers． and in 45 －and 150 －foot lengths．

BannerBrite continuous－ roll computer paper costs between \＄11．95 and \＄19．95．－Micro Format， Inc．， 533 North Wolf Road， Wheeling，IL 60090； Phone：1－800－333－0549 or 708－520－4699；Fax： 708－520－0197

VIDEO－AMPLIFIER TRAN－ SISTOR ARRAY．Designed for use as an output device in very fast video－amplifier circuits，Motorola＇s CR820 transistor array consists of a complementary pair of sil－ icon bipolar transistors connected as emitter fol－ lowers．Their primary use will be in black and white CRT video monitors，with other applications where discrete steps of bright－ ness are required．The ar－ ray consists of a high－ voltage，high－cutoff fre－ quency NPN chip mounted along with a similar PNP chip in a common SOE－ type package．Collector－ base breakdown voltage is 120 volts for the NPN tian－ sistor and -80 volts for the PNP．Cutoff for each chip is typically 1 GHz ． Junction－to－case thermal resistance is $20^{\circ} \mathrm{C} / \mathrm{W}$ ．

The CR820 costs $\$ 8.00$ for quantities of 25 and up； samples and small quan－

As the demand for computers and microprocessors in business，manufacturing and communications continues to grow，so does the need for qualified technicians．It＇s not unusual for experienced technicians to earn from $\$ 30,000$ to more than $\$ 40,000$ a year．＊Now through Peoples College of Independent Studies you can train for this exciting field without interrupting your job or home life

Choose From Five Programs of Study
－Electronics \＆Microprocessor Technology
－Industrial Electronics \＆Microprocessor Technology
－Communications Electronics with Micro－ processor Technology
－Computer Servicing \＆Electronics Technology
－Specialized Associate Degree In Electronics Technology

Professional Equipment Is Included

Depending on the program you select，you＇ll perfect your skills using this advanced equipment， included in the price of tuition：
－IBM－Compatible Personal Computer
－Digital Multimeter
－Digital Logic Probe
－Elenco Oscilloscope
－Portable Cellular Telephone
（＊Source：U．S．Bureau of Labor Statistics）

> Exclusive Extras That Enhance Your Training

Peoples College introduces some training firsts to make your learning experience more complete：
－Accelerated Learning System－a scientifically proven study system that helps you learn faster and easier than ever before．
－Video Tutor Training Tapes－give you a permanent，visual record of informative lectures and close－up demonstrations．
－Experience Labs－professionally designed experiments that give you hands－on＂bench＂ experience
－Industry Certification Training Guide－provided with four of our programs．Prepares you for examinations you may take for your professional license or certification．

Easy Payment Plans－No Finance Charges

To help you get started on your education，Peoples College has reduced tuition rates and offers low monthly payment plans with no finance fees．So don＇t delay，call or write for more information today！

For COLOR CATALOG Mail Coupon or Call TOLL FREE 1－800－765－7247

Programs offered only in United States，Canada，Puerto Rico and Virgin Islands．No Obligation．No sales person will call．

Our programs are accredited by the Accrediting Commission of the National Home Study Council

YES！I would like to know more about your training programs．Send a catalog to：

Name \qquad
Address
City
State Zip
Phone \＃
PEOPLESOOLLEGE
OF INDEPENDENT STUDIES 233 Academy Drive • P．O．Box 421768 Kissimmee，FL 34742－1768 Member，D．L．Peoples Group R1191

tities are available from stock.-Motorola Semiconductor Products, Media Relations MD 56-102, P.O. Box 52073, Phoenix, AZ 85072

ACTIVE DIFFERENTIAL

 PROBE. The API SI-9000 differential probe comes out of the box ready to use. Its built-in, precision differential amplifier is internally powered and requires no adjustment. The Sl-9000 can be used in the lab, in the field, and for edu-cation; and for monitoring, testing, designing, and troubleshooting in such areas as balanced datatransmission lines, power converters, inverters. switching-mode power supplies, robotics, HVAC, machine/tool control, and controlled lighting sys tems. The unit uses one input channel of any generalpurpose oscilloscope. It has convenient switch-selectable gains, DC to 15

CIRCLE 22 ON FREE INFORMATION CARD

MHz bandwidth, and a constant input impedance of 2 megohm and 2.5 pF . The SI-9000 can be used with inputs as high as ± 700 volts and provides 2% accuracy for outputs as high as ± 3.5 volts across loads as low as 1 kilohm.
The SI-9000 active differential probe costs \$399.-Avex Probes Inc. 1683 Winchester Road Bensalem, PA 19020 Phone: 800-877-7623.

PCXI COLOR VGA MONITOR.
Rapid System's PX1490 is a 7.5 -inch, VGA color monitor for the "PC Extended for Industry' (PCXI) system. PCXI is a modular, industrial PC based on a 13 -slot passive backplane. Each part of the PC is enclosed in a metal, shielded, cooled, modular enclosure. The PX1490 monitor, a Sony Trinitron with 0.26 mm dot pitch and 720×480 maximum reso-

CIRCLE 23 ON FREE INFORMATION CARD
lution, is completely integrated into the PCXI chassis, connecting directly to the PCXI video module. Depending on configuration, a complete system leaves two or three slots open. It can be used for rack-mount applications requiring built-in, eyelevel monitoring, in such fields as production testing, factory automation, process control, and data acquisition.

The PX1490 monitor costs \$1699.-Rapid Systems Inc., 433 North 34th Street, Seattle, WA 98103: Phone: 206-547-8311; Fax: 206-548-0322. R-E

SIGNAL, INC. 10278 N.W. 47th Street • Sunrise, Florida 33351 • 305/748-7513 • Fax 305/749-6119

A Shocking Offer！

Now for the first time in CIE＇s 56 yeat history you do not have to be enrolled at CIE to receive our Electronics and Electricity Lessorı Modules． Available for a limited time to non－students for the shockingly low introductory price of only $\$ 99.50$ ．

With CIE＇s patented AUTO－ PROGRAMMED method of learning you＇ll quickly learn and then master the basics of electronics and electriciy and then move on to ．．．soldering techniques，applications of Kirchhoff＇s law，voltage and power，printed circuit boards ．．．and much，much，more．

Your commitment to CIE ends with your payment，but CIE＇s commitment to your success just begins when you receive your lessons，exams，binder and equipment．This special price includes the benefits CIE normally extends to its students and graduates．

> Yes，send me CIE＇s Introductory Electronic and Electricity Lessons and Equipment．

A7311
Name：
Street： \qquad Apt．\＃： \qquad
City：
State： \qquad Zip： \qquad
Age： \qquad Phone（＿＿）

BOOKSTORE
1776 East 17th Street Cleveland，Ohio 44114

Total Merchandise：
$\$ 99.50$
Ohio Residents add 7\％Sales Tax：
California Residents add 6 1／2\％Sales Tax：
Total this order：
Shipping and Handling Charges： \qquad
Method of Payment：Amount Enclosed： \square \＄
a Personal Check or Money Order
－Master Card Visa

Card Expiration Date：
Signature：

CHARGE BY PHONE！

9 AM to 4：30 PM Eastern Time； 1－800－321－2155 ext．7311；In Ohio 1－800－523－9109 ext． 7311

NEW HTT

Use The Free Information Card for fast response.

TELEVISION AND VIDEO SYSTEMS: OPERATION, MAINTENANCE, TROUBLESHOOTING, AND REPAIR; by Charles G. Buscombe. Prentice Hall, Englewood Cliffs, NJ 07632; $\$ 45.80$.

CIRCLE 40 ON FREE INFORMATION CARD

The most popular category of consumer elec-. tronics is video-encom-
passing televisions monitors, projection TV's, and VCR's-so there are ever-expanding opportunities in servicing such equipment. This book, intended as a training tool for tomorrow's technician's and a reference source for those working in the field today, explores all facets of modern electronic consumer product servicing.

The book assumes a basic knowledge of electronics on the part of the reader, and concentrates instead on theory and troubleshooting. Divided into sections by equipment category, each section contains a straightforward presentation of theory, containing almost no engineer-
ing concepts or mathematics, followed by detailed explanations of troubleshooting techniques, accompanied by block diagrams, partial schematics, and other illustrations. At the end of each chapter are questions designed to make the reader ponder what has been taught, and to promote understanding the material. Also included is a full schematic of a late-model color TV that serves as an exercise in schematic reading and circuit tracing.

RADIO PRODUCTION: ART AND SCIENCE; by Michael C. Keith. Focal Press, 80 Montvale Avenue, Stoneham, MA 02180; \$29.95.

Taking a fully integrated approach to the subject of radio production, this book examines the effects of

CIRCLE 39 ON FREE INFORMATION CARD
station programming formats on the production process, with the belief that the two are inseparable. The first section of the book provides a brief history of radio production followed by a depiction of a

3 for \$75-10 for \$200-Mix or Match 30 DAY MONEY BACK GUARANTEE (3 FILTER LIMIT)

FAST DELIVERY
CALL TOLL FREE FOR C.O.D. OR SEND CHECK TO ORDER
STAR CIRCUITS
P.O. BOX 94917 LAS VEGAS, NV 89193
1-800-535-7827

Ask about quantity discounts Model Shown: 510-SW-1 100 MHZ , Switchable X1 $\times 10$.
\star Complete range of monolithic \& modular probes from $60 \mathrm{MHz}-300 \mathrm{MHz}$. Available with read-out feature.

* Compatible with all oscilloscopes.
* Complete accessory pack (as shown).
* Tek and HP users: try us and compare our high quality low cost probes!
* Made in the U.S.A.

Call for Free catalog
1-800-87-PROBE

Attention All Oscilloscope Users Try API Probes FREE for 30 days.

We are so sure that our probes will meet or exceed your performance requirements that we will send qualified buyers a sample for a 30 day evaluation. After 30 days, either keep the probe and we will bill you, or simply return it to us. It's that easy.
A
Avex Probes Inc.
day in the life of a production director in a modern studio. The skills and qualities required to meet the responsibilities of the job are discussed. The second part of the book begins with an analysis of studio design characteristics, including size, layout, and acoustics, and evaluates the latest audio equipment, including MIDI, synthesizers, digital processors, and computers, in the context of their roles in the production studio. Part III covers the basics of copy preparation, good announcer delivery, and the techniques used in tape editing. A dozen of radio's most popular formats are analyzed in Part IV, along with a look at how the format affects the way that commercials, features, promos, and public-service announcements are produced. The book's final section takes a look at several aspects of the production experience in noncommercial formats. As a whole, the book is intended to provide the reader with a taste of what working in radio production is really like, along with an understanding of how the equipment works and how programming influences the entire radio production process.

INFRARED OPTOELECTRONICS 1991 PRODUCT SELECTION GUIDE; from Quality Technologies, 610 North Mary Avenue, Sunnyvale, CA 94086; Phone: 800-LED-OPTO; free.

CIRCLE 38 ON FREE INFORMATION CARD

This 16-page booklet describes a comprehensive line-up of infrared LED's and phototransistors. Packaging options include metal can, plastic T-34, T-1, T-13/4, and a three-lead T-1$3 / 4$ phototransistor. Userfriendly specifications provide guaranteed min-max parameters. The book also includes two technical papers for design engineers: "Testing Output Irradiance of Infrared LED's" and "Understanding Light Sources When Measuring On-State Collector Current in Phototransistors.

SOLDERING TOOLS FOR ELECTRONIC PRODUCTION; from Ungar, Division of Eldon Industries, 5620 Knott Avenue, Buena Park, CA 90621 ; Phone: 714-994-2510; free.

CIRCLE 37 ON FREE INFORMATION CARD

Ungar's updated lines of soldering and desoldering equipment and electronic production aids are described in this 25 -page illustrated color catalog. Included are surface mount rework systems desoldering service centers, soldering systems, soldering/desoldering irons, heat guns, and re chargeable cordless tools. Highlighted is a new line of electronic manufacturing aids, including flushcutters, pliers, and other hand tools; masking devices dispensers; thermal wire strippers; and assembly devices. The catalog provides product descriptions, specifications, MIL-SPEC compliance, and selection guidelines.

R-E

> For Fast, Accurate Measurement of Extremely Low Frequency Nowl. Magnetic Fields
Magnetic Fields in the 50 or 60 Hz ranges, generated by hundreds of sources in today's industrialized environment, are being looked at more and more as possible health hazards. The model 4060 provides instant measurement of these fields, in milligauss or gauss, merely by flicking a switch. Designed for measuring both household and industrial sources. Priced under $\$ 180$.
Measures fields generated by:

- Power Transmission Lines
- Microwave Ovens
- Televisions - Computers
- Electric Machinery
- Dozens of other Sources

Request full data today!

6120 Hanging Moss Road Orlando, FL 32807 ELF Hotline: 407-678-7308

CIRCLE 186 ON FREE INFORMATION CARD

The ER-4 PHOTO ETCH KIT gives you the tools, materials and chemicals to make your own printed circuit boards. The patented Pos-Neg ${ }^{m 4}$ process copies artwork from magazines like this one without damaging the page. Use the circuit patterns, tapes and drafting film to make your own $1 X$ artwork. Or try the Direct Etch ${ }^{m}$ system (also included), to make single circuit boards without artwork. The ER-4 is stocked by many electronic distributors, or order direct. Add $\$ 3.50$ for handling and shipping. ER-4 PHOTO ETCH KIT (NV and CA residents add sales tax) . . . $\$ 38.00$ DATAK'S COMPLETE CATALOG lists hundreds of printed circuit products and art patterns. Also contains dry transfer letter sheets and electronic title sets for professional looking control panels. WRITE FOR IT NOW!

Parts Special-Order Hotline. Your local Radio Shack store stocks over 1000 popular electronic components. Plus, we can special-order over 10,000 items from our warehouse-linear and digital ICs, transistors and diodes, vacuum tubes, crystals, phono cartridges and styli, even SAMS ${ }^{*}$ service manuals. Your order is sent directly to your Radio Shack store and we notify you when it arrives. Delivery time for most items is one week and there are no postage charges or minimum order requirements
(1) Shielded RS-232 Jumper Box. Topquality inline D-sub 25 adapter. Wire the included jumper wires and board to suit your need. \#276-1403
9.95
(2) Computer RS-232 Tester. Dualcolor LEDs monitor seven data/control lines to help you spot problems quickly. Dsub 25 . Connects inline \#276-1401
14.95
(3) Grounded-Tip Soldering Iron. 15W. \#64-2051 7.49
(4) Vacuum-Type Desoldering Tool. \#64-2120
6.95
(5) Locking Forceps. $6^{\prime \prime}$ long. Stainless. \#64-1866
.4 .95
(6) Rosin Soldering Paste Flux. 1 oz . \#64-021
1.79
(7) Lead-Free Solder. 96% tin, 4% silver. 0.25 oz. \#64-025
1.99
(8) 10 -Amp Microwave Oven Fuses. \#270-1256 Pkg. of 2/1.29
(9) 2-Amp Fast-Acting Fuses.
\#270-1275 Pkg. of 3/79¢
(10) 5-Amp "Blade" Vehicle Fuses.
\#270-1205 Pkg. of 2/89C
Computer/Printer/Business Machine AC Power Cords. 6 feet long.
(11) Extension. Just plug in to lengthen existing cord.
\#278-1259
4.99
(12) With Space-Saving 90° CEE Connector. \#278-1260
5.99
(13) With Straight CEE Connector. \#278-1257

Since 1921 Radio Shack has been the place to obtain up-to-date electronic parts as well as quality tools, test equipment and accessories at low prices. Our 7000 locations are ready to serve you - NOBODY COMPARES

(7)

(2)

(3)

(1) Voltage Regulator ICs. Feature
built-in overload protection and ther-built-in overload protection and ther-
mal shutdown. Great for custom proects. Maximum input: 35VDC
7805. 5V. \#276-1770
1.19
7812. 12V. \#276-1771
1.19
(2) Low-Voltage Motor. Just the thing for science projects, robotics and solar power demos. Operates from $1 / 2$ to 3VDC. About $11 / 2^{\prime \prime}$ long \#273-223

996
(3) High-Speed 12VDC Motor. Up to 15,200 RPM, no load. About $2^{\prime \prime}$ long. \#273-255
2.99
(4) "Ding-Dong" Chime. This IC and mini-speaker combo is ideal for a customer-entry alert or doorbell. Produces 80 dB sound pressure at 12VDC Operates from 6 to 18VDC \#273-071
8.99
(5) Surface-Mount Resistors. $200-$ piece assortment of 15 popular values Rated $1 / 8$ watt, 5% \#271-313

Set 4.99
(6) Metal Project Cabinet. An attractive, easy-to-drill housing at a low price. $3 \times 5^{1 / 4} \times 5^{7 / 8^{\prime \prime}}$.
\#270-253
6.79
(7) Power Supply Project Case. Vented $21 / 2 \times 4^{5 / 8} \times 3^{1 / 4^{\prime \prime}}$ molded case: \#270-287
3.99
(8) 0 to 15 DC Voltmeter. Quality jeweled movement. \#270-1754 7.95
(9) Box/Board Combo. Molded enclosure plus predrilled $2 \times 31 / 8^{\prime \prime}$ board, labels and more. \#270-291
(10) Eight-Position Audio Phono Jack Board. \#274-370 1.69
(11) 1:1 Audio Transformer. Z: 600 900』. \#273-1374
3.59
(12) Three-Pin XLR Mike Plug. Metal body. \#274-010 2.99
(13) Three-Pin XLR Inline Socket. \#274-011 2.99
(14) Three-Pin XLR Panel Socket. \#274-013

A BUYER'S CUIDETO:

Digital STORAGE
 Our in-depth approach to understanding digital storage oscilloscopes will shed new light on these sophisticated test instruments.

 OscilloscopesIF YOUVE EVER USED A DIGITAL STORAGE OS cilloscope (DSO), you know what an invaluable tool it can be. DSO's are designed specifically to receive, store, and process a variety of signals. including one-shot events, pre-trigger actions and various fast- or low-frequency signals that would normally escape detection by ordinary analog scopes. Unlike analog storage oscilloscopes, DSO's can store transients as well as repetitive waveforms permanently in digital memory for later viewing or record keeping.

DSO's are unsurpassed in their ability to record characteristic waveforms for individual analysis or for comparison with other waveforms at a later time. Binary data captured in a DSO's memory can be transmitted to a central computer, sent to an X-Y recorder for hard copies, or permanently stored on tape or disc.

We will begin with some basics on how a DSO operates, then we'll discuss resolution, accuracy, bandwidth and risetime considerations as well as some specialized features which have made DSO's so popular. After laying out the groundwork on critical DSO characteristics, we'll give you a round up of some units ranging in price from about $\$ 1700$ all the way up to $\$ 9900$!

Digital bandwidth

One of the most important operating specifications of a DSO is its maximum sampling rate. The sampling rate of a DSO is usually specified in megasamples per second (Ms / s). The quality of a displayed waveform depends on the number of dots, or samples, that are taken for each cycle. With a high number of samples for each cycle, the waveform will be displayed in great detail. When fewer samples are taken, important details may be lost.
Digital bandwidth can best be illustrated with a simple example. If a relatively low input signal of 500 kHz is displayed on a DSC that can sample at a rate of $50 \mathrm{Ms} / \mathrm{s}$, the number of samples that are taken during one cycle can be found by dividing the signal frequency into the scopes sampling rate. Therefore, the number of samples equals

STAN PRENTISS
$50 \mathrm{Ms} / \mathrm{s} \div 500 \mathrm{kHz}=100$.
One cycle of the displayed 500kHz signal is made up of 100 dots. That sampling rate may be fine for lower frequencies, but if you have a much higher frequency of 10 MHz , the sampling rate reduces to only 5 dots per cycle. which will not give a clear picture of the actual waveform.

When a signal is sampled less often than it should be, a phenomenon known as aliasing occurs. An under-sampled signal, and the resulting aliased signal is shown in Fig. 1-a and -b, respectively. To avoid aliasing error, more samples per second must be taken.

According to the Nyquist criterion, to completely reconstruct a waveform, sampling must occur at a frequency greater than twice the rate of the highest frequency for ordinary information, and often greater than 10 times for rise and fall time measurements. The requirement for a high sampling rate means that the analog-to-digital converter (ADC) must have a fast conversion rate. That usually requires an expensive flash converter, or a less expensive analog storage device, both of which we will discuss further.

A commonly used "figure of merit" is the useful storage bandwidth (USB). The USB describes the maximum signal frequency a DSO can store, and is dependent on the sampling rate and the type of display used. The USB can be calculated as the (maximum sampling rate) $/ 25$, and is the up-per-frequency limit that the DSO can adequately reproduce. That frequency limit, however, can be extended by using different inter-

FIG. 1-AN ALIASED SIGNAL; an input signal with a low sampling frequency (a), and the resulting aliased signal (b).

FIG. 2-INTERPOLATION METHODS; a dot display (a) has no interpolation, a linear interpolator connects the dots with vectors (b), and sine interpolation (c).
polation methods. Interpolation is essentially the DSO's ability to "connect-the-dots," smoothing the image into a fairly continuous waveshape.

A dot display (Fig. 2-a) is useful as long as you have enough dots to reconstruct the waveform. Generally, about 25 points per cycle must be sampled for an adequate display. Therefore, for a full-scale sinusoidal display, the USB is equal to
maximum sampling rate (Ms / s)/25.
Linear interpolation (Fig. 2-b), or vector display uses a vector generator to draw lines between the data points on the screen. When that type of interpolation is used to display a sine wave, only 10 lines per cycle are needed to reconstruct the waveform. The USB for a linear interpolator is therefore
(Ms/s)/10.
Sine interpolation (Fig. 2-c) can even further extend the USB by introducing a sinusoidal function between the dots. Only 2.5 points per cycle are needed to display a signal. The USB of a sine interpolator is
(Ms/s)/2.5.
Not all measurements involve sine waves. When dealing with pulse waves, it is the rise time that determines the scope's ability to display such waveforms, as we'll now see.

Rise time

One of the most important parameters involved in reproducing pulse waveforms is the rise time (T_{r}). In analog oscilloscopes, the rise time can be calculated simply by the equation

$$
T_{r}(n s)=0.35 / \text { bandwidth }(M H z) .
$$

A $100-\mathrm{MHz}$ scope, for instance. would have a rise time of

$$
\begin{gathered}
0.35 / 100 \times 10^{6} \\
=3.5 \times 10^{-9}=3.5 \mathrm{~ns} .
\end{gathered}
$$

With digital scopes, however, minimum instrument T_{r} varies between 0.8 to 1.6 of the sample intervals. If you measure between 10% and 90% of the pulse amplitude, the maximum possible rise time is

$$
\begin{gathered}
\mathrm{T}_{\mathrm{r}}=0.8 \times 2 \text { (sample interval) } \\
\mathrm{T}_{\mathrm{r}}=1.6 \text { (sampling rate). }
\end{gathered}
$$

Because the most limiting measurement errors occur when a 1.6 sample interval is used, the useful rise time (UT_{r}) can be deined as

$$
\begin{aligned}
& U T_{r}=1.6 / \text { (sampling rate)or } \\
& U T_{r}=(\text { minimum sample interval }) \times 1.6 .
\end{aligned}
$$

So in a worst case situation where digitizing rates were 100 Ms / s, the minimum sample interval would become 0.01μ s and

$$
T_{\mathrm{rDSO}}=0.01 \times 1.6=16 \mathrm{~ns} .
$$

FIG. 3-RISE TIME IS AN IMPORTANT parameter in recording pulses. Errors in rise time made by a DSO depend on sample placement. The displayed signal can vary from 0.8 (a) to 1,6 (b) sample intervals.

HITACHI PRESENTS EIGHT MODELS of DSO's with attractive specifications, some even have four inputs.

That calculation is based on pulses, not on dots, which are said to have further error conditions, and sine waves may appear faster than the actual input signals due to induced preshoots and overshoots resulting from a small number of input samples.

In Fig. 3-a, the step is exactly between two sample intervals. with a rise time of the resulting display of $0.8 \times$ (sample interval). While viewing the same signal in Fig. 3-b, a sample acquisition is taken in the middle of the step. This is the worst case where the rise time shown in the display is equal to $1.6 \times$ (sample interval).

The real-time resolution between samples can also be calculated easily by dividing the sampling rate by 10 and then taking the reciprocal of that value.

Res $=100(\mathrm{Ms} / \mathrm{s}) / 10=10 \mathrm{MHz}$ $1 / 10 \mathrm{MHz}=100 \mathrm{~ns}$

As a practical example, a $100-$ Ms / s scope would sample every 10 nanoseconds ($1 / 100 f \times 10^{6}$). Faster sampling would require a higher input-amplifier frequency response. A $500-\mathrm{Ms} / \mathrm{s}$ instrument would need a rise time of 1.17 ns since it samples every 2 ns . Be aware of such parameters at all times when undertaking rise time and glitch measurements since bandwidth limitations cause both amplitude and sample timing errors. Unlike an analog scope, you cannot use the useful rise time to work back and calculate the rise time of the original pulse. UT ${ }_{I}$ is a measure of the upper limits of performance of a DSO.

Now that we've covered some critical aspects of DSO bandwith and rise time, let's look a little deeper into the process of waveform digitization.

Digitizing basics

The primary difference between DSO's and analog storage
scopes is their method of storing waveforms. DSO's digitize waveform data, which is then stored in digital memory, while analog storage scopes store waveforms in the CRT by either bistable or mesh storage techniques.

There are three stages involved in digitizing; sampling, quantiz-

KIKUSUI MODEL 5040 is a $400-\mathrm{MHz}$, $25-$ Ms/s dual-channel scope with 1 K per channel of memory storage.
ing, storage, and readout. Sampling obtains a value of an input signal at specific points in time. Quantizing uses analog-to-digital conversion to transform the sampled values into binary numbers for storage. The digitizing rate is determined by the time base, which is a very precise digital clock. The time base provides discrete points in time to reference the quantized values of the input signal. The digitizing rate
is usually specified in megasamples per second (Ms / s), or points per second. as we mentioned earlier. This digitizing normally occurs in the more modestly priced DSO's with an 8 -bit (2^{8}) converter producing 256 voltage levels. The digitized samples are then stored in memory, and converted back to analog form using a dig-ital-to-analog converter (DAC). A block diagram of a DSO is shown in Fig. 4.

Sampling

DSO's use two types of sampling techniques-real time (or one-shot) and equivalent time sampling. Random events, or one-shots, are every-day phe-

HEWLETT PACKARD'S SPECIAL-a dual channel, large screen digital (only) 54510A scope that digitizes 2 channels at 1 gigasample per second (Gs / \mathbf{s}) with 8 -bit vertical resolution.

FIG. 4-BLOCK DIAGRAM OF A DSO. The input signal is digitized by an A/D converter and stored in memory in digital form. To view the waveform on the CRT the data from memory is reconstructed in analog form using a D/A converter.

FIG. 5-SAMPLING TECHNIQUES of a DSO in real time(a) and equivalent times ($b-d$); sequential sampling (b) samples one point of the waveform or every cycle, random sampling (c) takes signals in a random sequence. Pre- and post-triggering capabilities are retained with random sampling. Multiple point random sampling (d) takes several points of a waveform in one cycle, thereby reducing acquisition considerably.
nomena occurring naturally under almost every conceivable circumstance. Repetitive or re-

FIG. 6-A RECONSTRUCTED WAVEFORM is shown from an input signal that has been sequentially sampled.
current events are usually manmade and may be sampled at some part of the information during each cycle. Therefore, sample rates for a one-shot event must be comparatively faster than those for repeated waveforms in sequence. Consequently, any DSO capable of repetitive sampling can accumulate and digitize considerably more high speed intelligence than one designed solely for one-shots, also called real time.

In real-time sampling, all samples for a signal are taken during a single pass. When a transient event occurs, such as a mechanical failure/shock, power-supply surge, or a biophysical response, it is usually short-lived and may not be repeated. A transient event must be captured while occurring, and sampled sequentially, from start to finish in one single sweep by real-time sampling. Figure 5-a shows how realtime sampling is used to reconstruct a sloping rectangular wave in a single cycle.

Equivalent-time sampling constructs a picture of a waveform by capturing a small bit of information from each signal repetition. That type of sampling is useful only for capturing repetitive signals. There are two types of
equivalent-time sampling; sequential and random sampling. Figure 5-b shows how sequential sampling takes one point of the waveform for every cycle. That process is repeated sequentially until the digital memory is filled. A reconstructed waveform using sequential sampling is shown in Fig. 6.

In addition to real time and repetitive events for DSO display, there is random sampling of information (Fig. 5-c) related directly to the scopes trigger point which also permits pre-and posttriggering waveform evaluations, which sequential sampling cannot do. Multiple-point random sampling (Fig. 5-d) produces one coordinated output from a number of inputs. Some analyzers also have several storage banks where one display can be compared with another, especially triggering actions and preceding or following bytes of serial or related information.

Real-time sampling of a DSO requires as many as 10 samples per period to accurately reconstruct a single-shot waveform. Repetitive sequential signal acquisition, however, is not determined by digital bandwidth restrictions, but by the oscilloscope's vertical (analog) am-

THE NEW TEKTRONIX 2221A 100-Ms/s analog and digital storage scope offers advanced digital processing capabilities in an economical 100 MHz bandwidth DSO.

TEKTRONIX' ANALOG 2252 4-channel scope with a 12-bit A/D converter, an Epson FX-series printer, and an IBM remote PC all combined to form a complete recording package.

HEWLETT PACKARD'S MODELS 54600 and 54601 combine the convenience and display responsiveness of analog instruments with the measurement power of digital architecture. Both models feature $100-\mathrm{MHz}$ repetitive bandwidth, $2-\mathrm{MHz}$ single-shot bandwidth, $20 \mathrm{Ms} / \mathrm{s}$, and a pushbutton hardcopy output.

PANASONIC'S VP-5710A is a menu-driven, 4-channel DSO with a large 64 K memory. A unique display position lets you view a large part of the signal on the top of the screen, with a small portion of the waveform below it.
plifiers since there is no mutual time relation between the digitizers internal clock and incoming signal, even though such sampling occurs at fixed intervals. Often, the clock rate is considerably lower than that of the sampled signal. That means that a $100-\mathrm{MHz}$ analog/digital os-

FIG. 7-QUANTIZING BY A/D converters transforms analog voltages into digital binary bits at selected levels.
cilloscope can reasonably display 100 MHz analog and repetitive signals, and only 10 MHz realtime information. That's a significant statistic in evaluating DSO's, although that $10: 1$ ratio can increase to 6:1 and even 2.5:1 in some of the higher bandwidth instruments with generous interpolation, as we have already discussed.

Guantizing

Quantizing develops as the next step, and is simply defined as a staircase of discrete levels identifying logic bit assignments of analog values to the variously sampled points. As shown in Fig. 7, when the analog voltage increases, decision levels are reached causing the ADC to change states adding additional " 1 's" and " 0 's" to the binary output. As always, there's a small measure of uncertainty in any

FIG. 8-A FLASH CONVERTER is used to quickly convert analog signals to digital output. Resistors, comparators, and their quantizing decoder are shown.
digital electronic processing, and that quantity is usually expressed as \pm the least significant bit (LSB). Here, however, quantizing uncertainty registers as noise and the fewer $A D$ bits the more noise. Larger AD's have proportionally less noise, as you might expect.

A/D converters

There are various methods of digitizing different voltage levels of a waveform. Four types we will discuss are; successive approximation, flash conversion, charge coupled devices (CCD's). and scan converters.

Successive approximation compares an input voltage with respect to the output of a digital-to-analog converter (DAC). It selects a position for the most significant bit (MSB) in discrete but fixed-time conversion steps. Therefore. there's a tradeoff involving both resolution and converter speed, which means long conversion times for maximum resolution conversion.

A more commonly used method is that of flash conversion (Fig. 8) involving a number of resistive dividers, an equal number of comparators, and a decoder which produces binary outputs. Flash conversion is used in a number of applications, including video codecs, where signals are applied to one input of the comparators and a reference or bias voltage across equal-value resistors to the other comparator input. With input voltages exceeding the reference, all com-

PANASONIC MODEL VP-5741A has the same features as the 5720 A except it has an analog bandwidth of 100 MHz with a sampling rate of $100 \mathrm{Ms} / \mathrm{s}$ and a $10 \mathrm{~K} \times 3$ memory storage.

PANASONIC MODEL VP-5720A is a 2-channel, $50-\mathrm{MHz}$ repetitive bandwidth DSO featuring a $15-\mathrm{MHz}$ single-shot bandwidth and a $40 \mathrm{Ms} / \mathrm{s}$ sampling rate. It has a $8 K \times 3$ memory storage and an expandable memory option.
parators deliver a high output, and zero inputs result in a low. In between. combinations of various voltage levels proceed into the encoder and result in a regular binary bit-stream driven by a rapid-system clock.

Flash converters have a fast conversion rate, but they can be expensive and their resolution decreases as the sampling rate is increased. You may want to consider a CCD which accepts inputs at over $100 \mathrm{Ms} / \mathrm{s}$. A CCD is
not an actual ADC. but an analog sampler which accesses rapidly and, by bucket-brigade action, converts the samples to a considerably lower rate at some discrete level. Its "bucket" cells are charged accordingly and represent an equivalent number of data points during a single incoming cycle, reserving several cells for CCD control.

The advantages of CCD's are their $100-\mathrm{Ms} / \mathrm{s}$ operation and lower cost over flash converters.

Also, the resolution does not decrease as the sampling rate is changed. One disadvantage of CCD's is that the scope cannot accept data during the digitizing period.

Scan conversions are also possible with double-ended cathode ray tubes that store intelligence on one side of the CRT target, reading it off with a separate beam on the target's back side. They're very fast but expensive, and no new information may be

TRIGGER SECTION TRIGGER

CONTROLS ALLOW YOU TO SELECT JUSI IHE
RIGHT TIME OR EVENT TO TRIGGER THE SCOPE,
II IELLS THE SCOPE WHEN TO BEGIN DISPLAYING
DAIA. OR IN THE STORE MODE, IO ACQUIRE AND
DISPIAY DATA.
DISPLAYS CUHSORS AND METHODS
SAVING ANO DISPLAYING THE SIORED WAVEFORMS.

CRT SECTION CONIROIS THIE
BRIGHINESS, FOCUS, AND ALIGNMENI OF THE CRT TRACE ALSO, CONTROI S THE BRIGHTNESS OF THE GRATICULE LIGHTS PHOVIDES A BEAM FINDER FUNCTION IO AID IN LOCATING DISPLAYS DEFLECTED OFF SCREEN.

BEZEL BUITONS CONTROL
SELECTION OF MENU ITEMS WHEN A MENU IS
DISPLAYED. IN THE NON-MENU MODE. THE BUTTONS CONTROL THE SAVE, STORE, ANO RECALI FUNCTIONS FOR THE REFERENCE MEMORY

VERTICAL SECTION CONTROLS THE
VERTICAL SCAI E NOITSIDIV OF A DISPI AYED
SIGNAL AND ITS POSITIONING ON THE SCREEN. PROVIDES INPUT CONNECTORS AND COUPLING FOR SIGNALS CONTROIS WHETHER CHI CH2 OR BOTH SIGNALS ARE DISPLAYED

Fig. 9-FRONT PANEL CRT and the various analog and digital controls for Tektronix' 2232
100 MHz and $100 \mathrm{Ms} / \mathrm{s}$ analog/digital oscilloscope.
received during reverse target scan．

Stbrage

Storage，also called memory， has differing record lengths de－ noting available random access memory（RAM）or read only mem－ ory（ROM）．RAM＇s store variables such as incoming data informa－ tion，while ROM＇s are fixed and permanent memories of instru－ ment display characteristics，al－ gorithms，and other implanted procedures．

Stored information may be col－ lected on disks，magnetic tape， and possibly bubble memories． But the shorter and more com－ mon means of storage are usually metal－oxide semiconductors such as CMOS，NMOS，or emit－ ter－coupled bipolar logic（ECL）． The larger the memory，the lon－ ger its time to fillup and update refreshment．So record lengths of 4 K to 32 K could have several in－ terpretations，depending on in－ dividual requirements．

Horizontal jitter

Occurring in many analog scopes and some of the older，less expensive DSO＇s，horizontal jit－ ter can actually ruin precision measurements of both sine waves and pulses．It appears in repetitive situations and is calcu－ lated as $\pm 1 / 2$ the elapsed time be－ tween samples．In most of today＇s storage scopes，jitter compensa－ tion or correction is already built－ in and should not be a problem． But unstable voltages entering analog equipment still cause various problems since they are directly related to the scopes in－ ternal trigger and its own inher－ ent stability．

Resolution and accuracy

The vertical resolution of an os－ cilloscope is its ability to dis－ tinguish between signals which are close together．Vertical resolu－ tion in a DSO is determined by the number of bits used in the ADC ．For example，an ADC that uses an 8－bit converter has a ver－ tical resolution of $256\left(2^{8}\right)$ ，or $0.391 \%(1 / 256)$ ．

If you know the bit count of an ADC，it＇s easy to find a DSO＇s ver－ tical resolution．For instance，a full－scale scope graticule setting of $50 \mathrm{mV} / \mathrm{div}$ ．would become 400 mV ，with 8 vertical divisions．

FIG．10－A SEMI－STAIRCASE reference voltage and an＂acquired＂channell 1 sig－ nal below．All readcuts，including trigger reference，applies to the lower signal which was supposed to be a sawtooth．

FIG．11－INITIAL SE＿ECTABLE SETUP for incoming waveforms in one of tite storage modes．

FIG．12－CRITICAL MEASUREMENTS are both easy and accurate with a good DSO． Here you＇re looking at a simulated one－ shot with a very fast rise time．

FIG．1：－AT 4K STORAGE，interpolation， or lack thereof，is plainly evident as the relatively flat times of these rounded pulses indicate．

Then，if your A／D offers 8－bit con－ version，that would amount to 2^{8} discrete levels，or a total binary number of 256 ．Therefore，your DSO＇s vertical resolution would become

$400 \times 10^{3} / 256=1.5625 \mathrm{mV}$.

Similarly，a 4－bit A／D instru－ ment would only exhibit 25 mV resolution $(4 / 16)$ ．So the combina－ tion of analog－to－digital con－ version bits and vertical scale settings do，indeed，determine a DSO＇s ability to separate the vari－ ous details of waveforms．That differs from accuracy，which is an accepted standard value that the scope may or may not fully re－ produce．Measurements，how－ ever，can＇t be more accurate than the DSO＇s resolution，and that＇s why such resolution becomes ex－ tremely important．

Horizontal resolution is a mea－ sure of the number of time incre－ ments that are stored in digital memory．If the signal is stored in 1024 data words，then the hori－ zontal resolution is $1 / 1024$ or 0．098\％．

According to Tektronix，analog cathode ray tube resolution is de－ rived from the CRT face area and the size and shape of its electron writing beam．The vertical and horizontal CRT amplifiers gener－ ally become further limiting fac－ tors in the analog domain．But in a digital scope，vertical resolu－ tion amounts to A / D resolution， but its accuracy，like analog scopes，depends on input and output amplifiers and is no more than $2-4 \%$ vertically and $1-3 \%$ horizontally．However，with im－ ages＂frozen＂on the CRT＇s face and the use of accurate markers called＂cursors，＂many of the foregoing errors can be largely overcome，especially the horizon－ tal ones．

A DSO uses a crystal oscillator clock instead of a linear sweep to generate its time base．The dig－ ital clock is so precise that ac－ curacy of 0.01% is possible with great stability．Consequently， while vertical accuracy is largely limited by analog readout，hori－ zontal accuracy becomes that of the clock，memory length，and／or cursor resolution and preci－ sion－a vast difference over ordi－ nary analog which is usually no better than 2% and subject to in－ evitable drift with aging．Another

Manufacturer	Model No.	Analog Bandwidth	Maximum Sample Rate	Y-channel Inputs	Cursors	On-Screen Readouls	Vertical Resolution	Acquisition Modes*'	Memory Storage	Time Base (seconds/div.)	Recorder Outputs*2	Price
B\&K Precision	2522	20 MHz	$10 \mathrm{Ms} / \mathrm{s}$	2	No	none	8 bits	*3	$2 \mathrm{~K} / \mathrm{ch}$	0.2s-0.5 $\mu \mathrm{s}$	Pen lift outputs	\$995
Philips/Fluke	95 Handheld	50 MHz	$25 \mathrm{Ms} / \mathrm{s}$	2	Yes	Yes	8 bits	*7	Store/recall	60s-10ns	-	\$1,295
	97^{\prime} H andheld	50 MHz	$25 \mathrm{Ms} / \mathrm{s}$	2	Yes	Yes	8 bits	*7	Store/recall 8 waveforms 10 setups	60s-10ns	Remote control RS-232C interface	\$1,595
	PM3320A	200 MHz	$250 \mathrm{Ms} / \mathrm{s}$	2	$2 X-Y$	Yes	10 bits	*8	4 memories of $4 \mathrm{~K} \times 10$-bit words	5 s -5ns	RS-232 or IEEE 488 interface	\$7,750
	PM3323	300 MHz	$500 \mathrm{Ms} / \mathrm{s}$	2	$2 \mathrm{X}-\mathrm{Y}$	Yes	10 bits	*8	4 memories of $4 \mathrm{~K} \times 10$-bit words	5s-5ns	RS-232 or IEEE 488 interface	\$8,500
	PM3335	60 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	Yes	Yes	8 bits	auto, single multisingle	16K	50s-10رs	RS-232 or IEEE 488 interface	\$2,395
	PM3350A	60 MHz	$100 \mathrm{Ms} / \mathrm{s}$	2 with auto set	$2 X-Y$	Yes	8 bits	*3 plus auto zoom	16K (8 traces)	$0.5 \mathrm{~s}-0.5 \mu \mathrm{~s}$	$X-Y$ rec. and matrix printer option 40/50	\$3,590
	PM3355	60 MHz	$250 \mathrm{Ms} / \mathrm{s}$	2 with auto set	$2 X-Y$	Yes	8 bits	*3 plus auto zoom	16K (8 traces)	$0.5 \mathrm{~s}-0.5 \mu \mathrm{~s}$	$X-Y$ rec. and matrix printer option 40/50	\$4,490
	PM3365A	100 MHz	$100 \mathrm{Ms} / \mathrm{s}$	$\begin{aligned} & 2 \text { with auto } \\ & \text { set } \end{aligned}$	$2 \mathrm{X}-\mathrm{Y}$	Yes	8 bits	*3	16K (8 traces)	0.5s-0.5 5 s	Pen lift outputs	\$4,990
	PM3375	100 MHz	$250 \mathrm{Ms} / \mathrm{s}$	$\begin{gathered} 2 \text { with auto } \\ \text { set } \end{gathered}$	$2 \mathrm{X}-\mathrm{Y}$	Yes	8 bits	*3	16K (8 traces)	$0.5 \mathrm{~s}-0.2 \mu \mathrm{~s}$	Pen lift outputs	\$5,390
Gould	1604	20 MHz	$20 \mathrm{Ms} / \mathrm{s}$	4	2	Yes	8 bits	plus auto zoom	10K	200s-50رs	X-Y	\$6,595
	1624	20 MHz	$20 \mathrm{Ms} / \mathrm{s}$	$\begin{aligned} & 4 \text { (with } \\ & \text { pairs) } \end{aligned}$	2	Yes	8 bits	plus auto 200m	10K	200s-5 $\mu \mathrm{s}$	$X-Y$	\$8,195
Hameg	HM408	40 MHz	$40 \mathrm{Ms} / \mathrm{s}$	2	X-Y	Yes	8 bits	*3	2K	1s-50ns	Plotter	\$2,398
	HM205-3	20 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	No	No	8 bits	*3	2K	1 s -200ns	Plotter	\$1,076
$\begin{aligned} & \text { Hewlett } \\ & \text { Packard } \end{aligned}$	54501A	N/A	$10 \mathrm{Ms} / \mathrm{s}$	4	2	Yes	8 bits	$\stackrel{3}{*}{ }_{\text {programmable }}$	501 points	5 s -2ns	Plotter	\$3,990
	54502A	N/A	$400 \mathrm{Ms} / \mathrm{s}$ (repetitive)	2	2	Yes	8 bits	programmable	501 points and 2 K extendable	5s-1ns	Plotter	\$7,450
	54600A	100 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	* 3	4 K	5s-2ns	Plotter and printer option	\$2,395
	54601A	100 MHz	$20 \mathrm{Ms} / \mathrm{s}$	4	2	Yes	8 bits	*3	4K	5s-2ns	Plotter and printer option	\$2,895
Hitachi	VC6023	20 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	* 4	2K	50s-0.2 $\mu \mathrm{s}$	Plotter	\$1,995
	VC6024	50 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	* 4	2 K	$50 \mathrm{~s}-0.2 \mu \mathrm{~s}$	Plotter	\$2,295
	VC6025	50 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	* 4	2 K	50s-50ns	Plotter	\$2,595
	VC6045	100 MHz	$40 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	* 4	4K	50s-50ns	Plotter	\$3,395
	VC6145	100 MHz	$100 \mathrm{Ms} / \mathrm{s}$	4	2	Yes	8 bits	* 4	2 K	50s-50ns	Plotter	\$5,295

Kenwood	CS8010	20 MHz	$10 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	* 5	2K	$1 \mathrm{~s}-0.5 \mu \mathrm{~s}$	Plotter	$\begin{array}{r} \$ 1,495 \\ \hline \$ 1,495 \end{array}$
Kikusui	$\begin{gathered} \text { DS5020A } \\ \text { DS5040 } \\ \text { COM7101A } \end{gathered}$ COM7201A	$\begin{gathered} 20 \mathrm{MHz} \\ 40 \mathrm{MHz} \\ 100 \mathrm{MHz} \\ \\ 200 \mathrm{MHz} \end{gathered}$	$1 \mathrm{Ms} / \mathrm{s}$$25 \mathrm{Ms} / \mathrm{s}$$50 \mathrm{Ms} / \mathrm{s}$$50 \mathrm{Ms} / \mathrm{s}$	2 No 2 No 4 Yes plus DVM, 4 Counter Yes plus DVM, Counter		No	8 bits	* 5	1K/ch	1s-0.2 $\mu \mathrm{s}$	X-Y recorder	
						No	8 bits	* 5	$1 \mathrm{~K} / \mathrm{ch}$	$1 \mathrm{~s}-0.2 \mu \mathrm{~s}$	$X-Y$ recorder	\$1,995
						Yes	8 bits	*5	$1 \mathrm{~W} / \mathrm{ch}$	0.05s-10ns	$X-Y$ recorder	\$5,895
						Yes	8 bits	*5	1K/h	0.05s-10ns	$X-Y$ recorder	\$6,895
Leader	$\begin{aligned} & 300 \text { handheld } \\ & 3100 \mathrm{D} \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ 100 \mathrm{MHz} \end{gathered}$	$30 \mathrm{Ms} / \mathrm{s}$ $40 \mathrm{Ms} / \mathrm{s}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \text { No } \\ 2 \end{gathered}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	7 bits 8 bits	$\begin{aligned} & * 5 \\ & * 5 \end{aligned}$	1.8 K words/ 2 K words/ch	$\begin{gathered} 200 \mathrm{~s}-0.1 \mu \mathrm{~s} \\ 50 \mathrm{~s}-50 \mathrm{~ns} \end{gathered}$	Plotter Plotter	$\begin{aligned} & \$ 1.995 \\ & \$ 3,695 \end{aligned}$
LeCroy	9410	150 MHz	$100 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	4096 points	* 5	$10 \mathrm{~K} / \mathrm{ch}$	$10^{3} \mathrm{~s}-2 \mathrm{~ns}$	$X-Y$ and dot matrix	\$6,900
Nicolet	NIC310	N/A	$1 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	12 bits with $z 00 \mathrm{~m}$	*5	Floppy disk 88 4K/disk	$200 \mathrm{~s}-1 \mu \mathrm{~s}$	$\begin{aligned} & X-Y \text { or } \\ & \text { strip chart } \end{aligned}$	\$4.995
Panasonic Factory Automation Co.	VP-5710A	100 MHz	$20 \mathrm{Ms} / \mathrm{s}$	4	$\begin{aligned} & \text { GND-V, } \\ & \Delta t \Delta V, \\ & \text { t } 1 / \Delta t \\ & \text { Yes } \end{aligned}$	Yes	8 bits 8 bits	Roll, rep.$8-\mathrm{MHz}$Single shotPiogrammableProgrammable	$6 K \times 1$ or user adjustable memory $8 \mathrm{~K} \times 3$	$0.5 \mathrm{~s}-20 \mathrm{~ns}$ $50 \mathrm{~s}-5 \mathrm{~ns}$	GP-IB plotter interface GP-IB plotter	\$3,995
	VP-5720A	50 MHz	$40 \mathrm{Ms} / \mathrm{s}$	2		Yes						\$5,900
	VP-5741A	100 MHz	$100 \mathrm{Ms} / \mathrm{s}$	2	Yes	Yes	8 bits		$10 \mathrm{~K} \times 3$	50s-5ns	$\begin{gathered} \text { GP-IB } \\ \text { plotter } \\ \text { interface, } X-Y \end{gathered}$	\$8,900
	VP-5750A	100 MHz	$200 \mathrm{Ms} / \mathrm{s}$	2	Yes	Yes	8 bits	Roll, rep. Programmable	80K non volatile memory	50s-5ns	GP-IB plotter interface, X-Y	\$9,900
Tektronix	$\begin{aligned} & 222 \text { PS } \\ & T D S 520 \end{aligned}$	$10 \mathrm{MHz}$ 500 MHz	$10 \mathrm{Ms} / \mathrm{s}$	2	No	Yes	8 bits	Roll, scan	512 points	$20 \mathrm{~s}-0.05 \mu \mathrm{~s}$	RS-232 interface	
			$500 \mathrm{Ms} / \mathrm{s}$	2	Yes	Yes	8 bits	Ref., roll, detect	50K points/ch.	10s-500ps	$\begin{aligned} & \text { GP-IB } \\ & 488.2 \end{aligned}$	\$9,490
	2201	20 MHz	$10 \mathrm{Ms} / \mathrm{s}$	2	No	No	8 bits 25 levels/div.	Roll/scan	2 K	$50 \mathrm{~s}-100 \mathrm{~ns}$	$\begin{gathered} \text { Epson } \\ \text { (optional) } \end{gathered}$	\$1,695
	2211	50 MHz	$20 \mathrm{Ms} / \mathrm{s}$	2	2	Time and volts	8 bits 25 levels/div.	Roll/scan	4K	50s-50ns	$\begin{gathered} \text { Epson } \\ \text { (standard) } \end{gathered}$	\$2,795
	2221 A	100 MHz	$100 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	$\stackrel{* 5}{{ }^{5}} \text { and } X-Y \text { plot }$	1K/4K	$0.5 \mathrm{~s}-5 \mathrm{~ns}$	$X-Y$ or dot matrix	\$3,995
	2232	100 MHz	$100 \mathrm{Ms} / \mathrm{s}$	2	2	Yes	8 bits	$\begin{gathered} * 5 \\ \text { and } X-Y \text { plot } \end{gathered}$	$\begin{aligned} & 4 \mathrm{~K} \text { extended } \\ & \text { to } 25 \mathrm{~K} \end{aligned}$	$0.5 \mathrm{~s}-5 \mathrm{~ns}$	$X-Y$ or dot matrix	\$4,995

Notes *1. Standard acquisition modes become special acquisition modes in some cases. Contact the manufacturer for detailed information on variations of acquisition modes. *2. Recorder outputs are normally either X-Y or dot-matrix plotters, but they can be strip charts and floppy disks as well. The individual specification sheets will list the many available options
5. Roll, pen, one shot.
*4. Roll, average, smoothing, one shot. Roll, refresh, single shot.
*5. Roll, pen, one shot.
*7. Min., max., average record, variable persistance
H! ио dols/əлes 'бu!

FLUKE'S HANDHELD SCOPEMETER models 95 and 97 feature $50-\mathrm{MHz}$ dual channel, $25 \mathrm{Ms} / \mathrm{s}$ sampling rate with autoset. A combination DSO and DMM, these instruments are ideal for rugged field use. Model 97 also has a sine wave or square wave signal generator output with optically isolated RS-232C remote control operation.
strong argument for maximum DSO horizontal accuracy is repeatability of measurements, and reduction of human errors by the use of cursors.

The front panel

Now that you have a general idea of what DSO's are designed to do, let's quickly introduce you to the front panel of a Tektronix model 2232100 MHz . $100 \mathrm{Ms} / \mathrm{s}$ digital/analog oscilloscope from graticule to the front panel, CRT and dot-matrix (they're less expensive) printer readouts.

Figure 9 shows the bezel and all front panel analog and digital controls. The callouts indicate $1 \times$ and $10 \times$ vertical amplifier settings from 2 mV to $50 \mathrm{~V} / \mathrm{div}$., sweep speeds from $50 \mathrm{~ns} /$ div. to $0.5 \mathrm{~s} / \mathrm{div}$., delayed sweep, TV field and line, variable holdoff, triggering levels, and $X-Y$ mode in the analog sections and setup, display, plotter, signal acquisition, storage, cursors, plotter output, waveform select, memory acquisitions, and save references, plus setup menus in the digital portion. A side panel contains an auxiliary connector and IEEE 488 or RS-232 port.

Applications

The first example shown in Fig. 10 is an output of a less expensive function generator with slight calibration and waveform purity problems. both of which are often found in inexpensive digital cir-
cuits. The bottom waveform is "supposedly" a reasonably linear sawtooth, while the top waveform is semi-staircase. The display has a time base of $2 \mu \mathrm{~s} / \mathrm{div}$., is sampled at 1 K , its AC voltage develops to 0.9 V since the vertical amplifier is set at $0.5 \mathrm{~V} / \mathrm{div}$., the trigger level for amplifier Yl reads out at 0.76 V , and the time between X origin and $\mathrm{X} \Delta$ time T equals $12.2 \mu \mathrm{~s}$. With absolutely no trace movement the mode is "save," and the SREF 1 A is included since it was previously stored. The line under " A " means the cursors are now positioned as shown on the acquired signal. The SAVE REF 1 remains until another waveform writes over this one and takes its place in memory.

Except for the stored SREF 1 A,
that same signal could have been shown similarly by an ordinary analog scope but probably without as much stability and probably without the on-screen readouts. The only fundamental parameter not immediately read out in modestly priced DSO's is the voltage difference between pulse peaks, and that is simply the inverse of time which is easily calculated, but not as accurate as 3-place electronic computation.

Incoming information

Now that programmable and primary hardware have been combined, let's begin to move on to some more intricate uses. With the help of a Tektronix/Polaroid C5-C oscilloscope camera, a menu for the Acquisition mode is adjusted so the 2232 will respond

DSO SOURCES

B\&K Precision

6470 W. Cortland St.
Chicago, IL 60635
(312) 889-1448

CIRCLE 351 ON FREE INFORMATION CARD

John Fluke Manufacturing Co.
Box 9090, MS 250E
Everett, WA 98206
(206) 356-5500

CIRCLE 352 ON FREE INFORMATION CARD
Gould Inc. Recording Systems Div. 3631 Perkins Ave.
Cleveland, OH 44114
(216) 361-3315

CIRCLE 353 ON FREE INFORMATION CARD

Hameg Inc.

88-90 Harbor Rd.
Port Washington, NY 11050
(516) 883-3837

CIRCLE 354 ON FREE INFORMATION CARD

Hewlett-Packard Co.

19310 Pruneridge Ave.
Cupertino, CA 95014
(800) 752-0900

CIRCLE 355 ON FREE INFORMATION CARD

Hitachi Denshi America Ltd.,
Test \& Measurement Div.
150 Crossways Park Dr.
Woodbury, NY 11797
(516) 921-7200

CIRCLE 356 ON FREE INFORMATION CARD

Kenwood USA Corp.

2201 E. Dominguez St.
Long Beach, CA 90810
(213) 639-4200

CIRCLE 357 ON FREE INFORMATION CARD

Kikusui Int. Corp.
19601 Mariner Ave.
Torrance, CA 90503
(213) 371-4662
(800) 545-8784

CIRCLE 358 ON FREEINFORMATION CARD
Krenz Electronic, Inc.
1020 Calle Cordillera
Suite 107
San Clemente, CA 92672
(714) 361-2433

CIRCLE 359 ON FREE INFORMATION CARD
Leader Instruments
380 Oser Ave.
Hauppauge, NY 11788
(516) 231-6900

CIRCLE 360 ON FREE INFORMATION CARD
LeCroy Corp.
700 Chestnut Ridge Rd.
Chestnut Ridge, NY 10977
(914) 425-2000

CIRCLE 361 ON FREE INFORMATION CARD
Nicolet Instrument Corp.
Test Instrument Division
PO Box 4451
Madison, WI 53711
(608) 273-5008

CIRCLE 362 ON FREE INFORMATION CARD
Panasonic Factory Automation Co.
Electronic Measurement Systems
9401 West Grand Ave.
Franklin Park, IL 60131
(708) 452-2501

CIRCLE 363 ON FREE INFORMATION CARD
Tektronix Inc.
Test and Measurement Group
PO Box 1520
Pittsfield, MA 01202
(800) 426-2200

CIRCLE 364 ON FREE INFORMATION CARD
to these or other selected settings in preparation for either convenient or specific measurements (Fig.11). Our attention will be directed to the various setup possibilities that are available on the setup menu. A rectangle denotes each selected position.

In Fig. 11, the Sample mode is selected which produces 100 samples for each graticule division: the greater than $0.1 \mathrm{~s} / \mathrm{div}$. selects either Roll or Scan storage for settings above this figure. Roll mode is somewhat like an electronic chart recorder, permitting slow signals to move across the CRT's face continuously from right to left; and the Trigger, indicated at $128 / 1 \mathrm{~K}$ storage by the " T " symbol towards the upper left can be adjusted and positioned incrementally between 4 and 1020 on the 1 K record, or from 16 to 4080 on the 4 K record.

In the Acquisition mode's sister display menu, Δ Time and Δ Frequency may also be selected as well as Peak Detect, waveform smoothing, and a Vectors mode, filling spaces between adjacent data points, producing a smooth, connected image. In Auto, Vectors operate at all times except from 0.5 to $0.05 \mu \mathrm{~s}$ (Repetitive Store).

Examples

Now that parameters are established according to the acquisition setup in Fig. 11, it's easy to look at such critical values as voltage measurements, trigger levels, and rise times shown in Fig. 12. At $0.1 \mu \mathrm{~s} /$ div. and $0.2 \mathrm{~V} /$ div., the Δ voltage readout is 0.428 V , the trigger position is at 0.11 V , and the time between 10% and 90% markers measures 0.064μ s which automatically becomes the rise time.

When you turn the scope and signal information off for several hours, the same stored display reappears when power is applied. You haven't missed anything, and all the parameters remain. A Polaroid photo of the display records the image for posterity. If you want to translate those microseconds into nanoseconds, just move the decimal three places to the right and the rise time becomes 64×10^{-9}. It's just that simple.

The waveforms of Fig. 13 are shown at a 4 K sample rate which

LEADER'S MODEL 300 features $30 \mathrm{Ms} / \mathrm{s}$ digital storage with a DMM, printout, and logic analyzer combination.
builds up the display over a considerable period. The interpolation isn't quite extensive enough to form a continuous pattern among the rise and fall portions. That occurs when sweep speeds exceed $1 \mu \mathrm{~s} / \mathrm{div}$. The bar graph above the "rectangled" cursor signals a switch to a 4 K -record length, although only 1 K of information is displayed at a time. The T for trigger point remains, but only at the 0.64 V level, and the time between cursors amounts to $1.715 \mu \mathrm{~s}$. The amplitude ($\Delta \mathrm{V} 1$) difference between the two cursors is only 0.008 V , which is fairly close to being even. The "Average" notation on the display's bottom means random signal noise is reduced by multiple signal inputs over a number of records.

Where you looking for a glitch among those voltages, you would select the peak or AC-peak detect mode, making the 2232 sample at its maximum digitizing rate as you search for a 10 ns or greater waveform abnormality. Note how nicely those displays photograph with a C5-C camera.

Digital featues are gradually making their way into analog scopes (see our Analog Oscilloscope article in this issue). Tektronix 2252 is a multi-application analog scope with 4trace readout and an ADC. The 2252 is strictly analog from input to virtual output, but one large 12-bit A/D converter for hard copy reproduction bars the way. Tek's 2252 is a 4 -channel, 100 MHz answer to those who want to see glitches, spurs, preshoots, overshoots, and all associated interruptions greater than 10 ns . It can be used with an Epson FX series dot-matrix printer, and doesn't require one-shot recorded storage. Plotter printouts of
this unique one-of-a-kind instrument can show transients, preshoots, overshoots, and random glitches.

Evaluations

Most DSO's we'll mention fall within a $20-200 \mathrm{MHz}$ group and are dual analog/digital units very popular now in the marketplace. Table 1 shows a rundown of many popular scopes now available, with some important specifications. Although several manufacturers, such as Hewlett Packard and Nicolet, do not produce combination units, they occupy strong positions in the industry and are included as well, plus two special digitizers, one of which doubles as a spectrum analyzer and the other a 4 -channel analog scope with an A/D digital printer readout.

- Hitachi-A real surprise with eight models already available and more on the way. Prices are attractive, superb, inclusive specifications, and interesting bandwidths. Models VC-6075, VC-5175, VC-6275 are not listed, but are still available.
- Leader-Two new announcements: a $30 \mathrm{Ms} / \mathrm{s}$ AC/DC-operated DSO that also features an 8 -bit logic analyzer, a data logger for DMM functions, and an autoranging digital multimeter, all in one 2.6 pounds instrument (Model 300); and a Mod. 3100 conventional analog/DSO having 100 MHz analog and $40 \mathrm{Ms} / \mathrm{s}$ with averaging "settable" from 2 to 256 bits, plus voltage, time, phase, and dB difference ratios. - Hewlett Packard-Doesn't combine analog and DSO's, but produces DSO's only. Four of their less expensive DSO's are listed with their dual time base displays, custom integrated circuits, 8 -bit A/D converters (except the 54502 which has a 6 -bit converter), and modular probes. The companys newest is the HP 54510 A at $\$ 10,950$, having a sample rate of $1 \mathrm{Gs} / \mathrm{s}$, repetitive bandwidth of 250 MHz and 8 -bit vertical resolution-all portable. - Tektronix-Not to be outdone by HP, Tektronix has introduced three all-digital scopes, one with a $10-\mathrm{MHz}$ sampling rate and a deflection factor of 50 mV to $500 \mathrm{~V} /$ div. called the 222PS Power Scout. The 222PS is intended for rugged field work such as indus-

Tek Direct has a wide range of scopes, starting at less than $\$ 1000$. Plus affordable probes, TV/Video gear, meters, and much more.

So ring us up and order your free catalog. We're just waiting for you to connect.

1-800-426-2200. 8AM-5PM. All time zones.

Copyright © 1991. Tektronix, Inc All rights reserved. 49A-187886.
trial power systems, marine repair, and plant maintenance. Tektronix models TDS 520 and TDS 540 have two and four channels, respectively, and feature surface-mount components so that amplifier and trigger-logic circuits can be mounted on a single PC board.

In both models, digitizers operate continuously at full speed and peak-detect glitches as small as 4 ns, regardless of the time-base setting. The single-channel sampling rate for models TDS 520 and 540 is $500 \mathrm{Ms} / \mathrm{s}$ and $1 \mathrm{Gs} / \mathrm{s}$, respectively. Record storage lengths are 50 K points per channel, augmented by zoom previews and signal expansions plus 90 on-screen icons, or images, for user aids-the beginning of a brand new TDS series by Tek.

Relatively low cost for 100 MHz , $100 \mathrm{Ms} / \mathrm{s}$, plotter and printer outputs, extensive training, simple controls, ample memory, good application notes, solid performance and long life.

- Nicolet-The NIC-310 is a new model with simplified controls, vertical and horizontal trace expansion to $60 \times$, automatic signal acquisition, massive storage and built-on disk drive controls. also portable.
- LeCroy-Another fine manufacturer of high quality instruments whose Mod. 9410, large-screen scope, optional 512K credit card memory, vertical sensitivities as low as $100 \mu \mathrm{~V} /$ div., pen or digital plotter outputs, offers displays in color, and a 1,000-point fast Fourier transform (FFT) to be completed in less than a second (another option) to operate as a spectrum analyzer!
- Kenwood and B \& K Preci-sion-Manufacturers of similar, low frequency, inexpensive scopes with virtually identical specifications.
- Philips-Supplies several lowercost analog and DSO combinations with interesting features, 100 and $250 \mathrm{Ms} / \mathrm{s}$. 16 K memories, and attractive pricing, together with excellent application notes-well worth investing in.
- Hameg-Also offers a pair of low-cost 20 and $40 \mathrm{MHz} / \mathrm{Ms} / \mathrm{s}$ scopes (models HM205-3 and HM408) with 2 K memories, X-Y cursors, and 8 bits of vertical resolution.
- Kikusui-Their COM 7101A
and 7201A have four inputs and 200 MHz analog response and 50 Ms / s for digital storage. They include a DVM and a frequency counter.
- Krenz-Model 3350 is a 2 channel, $50-\mathrm{MHz}, 100-\mathrm{Ms} / \mathrm{s}$ DSO with 8 -bit resolution and a 4 K memory. Krenz also offers a PSO 5570 MS-DOS compatible main frame with 8 channels, 20 MHz sample rate, up to 12 -bit resolution. a 50 -megabyte hard drive and a 1.44 -megabyte floppy drive. Analog input modules with various preamp. A/D converter, and memory specifications are used with the main frame. Other base units offered are the PSO 7010 and PSO 7040 featuring 8 and 16 channels, respectively, with a $14^{\prime \prime}$ color video display for high-resolution color graphics.
- Panasonic-Starting at \$3995 and ending at $\$ 9900$, Panasonic currently produces four DSO's with reasonably large memories; three of the four have two channels with 7 -inch CRT's. Model VP-5710A has a sampling rate of $20 \mathrm{Ms} / \mathrm{s}$ with 4 channels, model VP-5720 is a 2 -channel, $40 \mathrm{Ms} / \mathrm{s}$ DSO with arithmetic and waveform functions, $100 \mathrm{Ms} / \mathrm{s}$ model VP-5741A has time shift and a calculator, and $200 \mathrm{Ms} / \mathrm{s}$ model VP-5750A has an 80K-word, nonvolatile memory in addition to autoranging, programmable, and interpolation functions. All have effective nonstorage bandwidths of DC to 100 MHz , except model VP-5720A which has a bandwidth of 50 MHz .

What you see in the scopes we've discussed is both low cost and limited effectiveness, and higher cost with broadly inclusive instruments which have many common and a number of diverse features. New models are appearing rapidly and designs almost improving daily. Some time bases even stretch to 50 and 200 seconds on the low end, highly suitable for measuring power applications, slow mechanical movements, ballistics, electrical phenomena, injection molding, drive controls, and so on.

We advise you to take your own sweet time in DSO selection, study all specifications, check short term and long term requirements, consider the source, review training and applications. then worry about the price. R-E

ANALOG

 SCOPES

JEFF O'NEAL*

FIG. 1-REAL-TIME DISPLAY OF PULSE JITTER on an analog scope shows far more detail (a) than on a digital scope display (b).
where the jittered edge spends most of its time; the dimmer areas are where it spends less time.

In comparison, the digital scope shows far less definition of the jittered edge (1-b). That's because the digital display is a single trace reconstructed from digitized waveform samples stored in memory. The digital scope's representation of the
waveform is restricted to a singleamplitude value for each point in time.

An analog scope display, because it's made up of multiple real-time traces, can show multiple amplitudes at any point in time. That's extremely important for observing and analyzing complex, real-time signal activity such as jitter, various TV waveforms, and modulation, as
shown in Fig. 2. Modulated color levels are clearly visible in the intensity variations of an analog scope display (2-a), while a digital scope display conveys little information (2-b).

The differences between realtime analog and digital scope displays become clearer when comparing the two acquisition processes. The basic architecture of each type of scope is shown in Fig. 3, and the acquisition concepts are shown in Fig. 4.

The capture process

Notice in Fig. 3 that the overall architecture of both types of scopes is the same in many respects. Both scopes must have a high-quality analog front-end with adequate bandwidth and fidelity for the signals being captured. Both must have triggering circuits for triggered capture and display of waveforms. Both must have horizontal and vertical drive circuits in order to trace a signal's waveshape across the CRT display (except for raster-based displays, which work differently). And both can have built-in microprocessors for digital automation of instrument setups and other control functions

The main difference is in the input signal path from the vertical amplifier to the display. An analog scope has an analog path that passes the signal to the display in real time. In more advanced scopes, this analog path may also include integration of various measurement functions, such as voltmeters and counter/ timers. In the case of the Tektronix 2252 oscilloscope, the analog signal is also sampled by an A/D converter to provide output to a printer for hardcopies of repetitive waveforms. But the main signal path is pure analog.

Digitizing scopes, on the other hand, sample and digitize the analog signal as soon after the vertical amplifier as possible. There are numerous schemes for doing this, but the general goal is to sample, digitize, and store points as fast as possible for the price range of the particular digitizing scope.

Figure 4 illustrates the general capture processes involved for both types of scopes. In both types, the capture process occurs over a time period referred to as a
capture window. In the case of an analog scope (4-a) the window is determined by the scopes sweep speed setting. A $1-\mu \mathrm{s} /$ division setting, for example, provides a $10-\mu$ s window on a scope with 10 horizontal display divisions.

The portion of the waveform captured is determined by the capture-window length and the trigger-system setting. In the analog scope case of Fig. 4-a, triggering is set for the beginning of the positive slope on the waveform being measured.

When a positive waveform slope is encountered, the analog scopes sweep circuit is triggered. The waveform is traced on the display. Then at the end of the sweep, the CRT beam is blanked and retraced, and the scope's trigger circuit is rearmed for the next sweep.

The blank-retrace-rearm sequence, sometimes referred to as rearm dead time, is normally quite short in analog scopes. Thus. an analog scope can trigger through a quick sequence of capture windows. That allows the scopes CRT beam to repeatedly trace the shape of a repetitive waveform, keeping the screen phosphor highly excited for a bright trace. Or, as is the case with the analog capture process in Fig. 4-a, it shows the multiple traces of pulse-width jitter.

Digitizing oscilloscopes use the same capture window concept. Strictly speaking, however, a digital scope's capture window corresponds to the waveform memory's length (record length). Digital scopes with record lengths of 512 or 1024 waveform points typically display the entire waveform record over the full horizontal display width. Those with longer records (2048 or more points) usually display only a portion of the record and allow you to scroll the display through the record.

The time it takes for a digital scope to capture a waveform into memory depends upon the scope's record length and sampling rate. For example, with a 512 -point record and a $10-\mu$ s capture window, the scope must sample, digitize, and store a waveform point every 19.53125 nanoseconds ($10 \mu \mathrm{~s} / 512$). In other words, the scope's "realtime" sampling rate must be at

FIG. 2-THE FIVE MODULATED COLOR LEVELS OF A VIDEO SIGNAL are clearly visitle in the intensity variations of an analog scope display (a), while a dots-min digital scope display conveys little information about the signal's actual complexity. A digital scope's vector display would connect the dots for a clearer outline of the waveform, but still wouldn't provide the intensity variations that distinctly show the modulated color levels.
least 51.2 megasamples/second (MS/s) to capture all 512 samples in one $10-\mu \mathrm{s}$ capture window.

There's a wide selection of realtime sample rates available in todays digital scope market. But faster real-time sample rates mean more expensive technology and higher price tags.

For the sake of economics. most digital scopes use equiv-alent-time sampling on their faster sweep settings ($1 \mu \mathrm{~s} /$ division and faster). That allows repetitive waveforms to be captured at apparently high sample rates by building up a complete sample set over multiple capture
windows. This is illustrated in Fig. 4-b for comparison to the analog scope's real-time display method.

Notice in Fig. 4-b that only a few samples have been taken in two separate capture windows. On fast time-base settings, the scope's sampling rate may allow only a few samples per capture window. Thus, it may take numerous windows to build a full complement of 512 samples to fill the waveform record.

Also, notice that a triggered capture window doesn't occur at every potentially valid trigger point. In other words, some of the pulse repetitions in Fig. 4-b are skipped. That's because of the digital scopes longer rearm dead time. Recall in the analog scope that there was a short rearm dead time where the scope's trace was blanked and retraced. then the trigger system rearmed. Digital scopes must complete some digital processing on the input waveform before rearming. The length of their rearm dead time will therefore depend on the amount and speed of that digital processing.

The point is, a repetitive waveform displayed in equivalenttime on a digital scope is really a sampled composite of numerous capture windows. Additionally, the digital display traces a single set of points versus the multiple real-time traces of an analog display scope.

The repetitive pulses have variations in the pulse width. As a result, the trailing edge samples in 4-b are actually a composite of numerous, time-shifted edges. When the samples are connected by straight lines (display vectors) for a vector display, the jittered edge looks like a burst of noise rather than the traditional analog scope display of jitter in real time.

If a repetitive waveform is truly periodic (such as a sine wave), the analog and digital scope displays usually are quite similar. The exception is when numerous waveform cycles occur over the capture window. That results in fewer samples per waveform cycle on a digital scope, and the display may contain visual aliasing (see Fig. 5). Analog scopes don't sample, so they don't have this problem.

FIG. 3-OVERALL ANALOG AND DIGITAL SCOPE ARCHITECTURES are quite similar today. The major difference is that analog scopes have an analog signal path to the display and digital scopes have a digital storage path.

FIG. 4-METHODS OF WAVEFORM CAPTURE remain essentially the same in analog scopes (a), while digital scopes may use a variety of sampling schemes to emulate realtime analog signal displays (b).

FIG．5－VISUAL ALIASING occurs when the display of a sampled waveform suggests the presence of different or additional waveforms．Dots－only displays are the most suscepti－ ble to visual aliasing and can suggest that the waveform contains a low－frequency sine wave when it actually doesn＇t．

Rubber screwdrivers

The differences in capture methods can affect how easy a scope is to setup and use as well． Recall that an analog scope re－ arms quickly and traces each capture window＇s waveform in real－time．The display updates in real－time from trigger to trigger． So，if you use an analog scope to observe a waveform and＂use a screwdriver＂to adjust the wave－ form＇s amplitude，you see the change immediately on screen．

With a digital scope，the equiv－ alent－time display must build up over several windows，causing a slower update rate．As a result， when you make a＂screwdriver adjustment，＂you may not see an instantaneous change in the waveform．The delay between ad－ justment and observed results is like using＂a screwdriver with a rubber shaft．＂

Because of the＂rubber screw－ driver effect，＂and for other rea－ sons（especially scope setup ease），some digital scopes offer a real－time analog mode along with the digital storage mode．You can switch between a traditional ana－ log scope display or a digital stor－ age display as needed．More－ expensive digital scopes with high bandwidths and fast update rates provide what is essentially a real－time display like an analog scope．

Now，think about what was said about sampling and digitiz－ ing waveforms．Sampling means that you get discrete points equally spaced in time on the waveform and nothing in be－ tween．If there are 512 points in the record，the time resolution of the captured waveform is one part in 512．These samples are also digitized．usually to one part
in 256 resolution（8－bit digitiz－ ing）．The net result is that，on a digital scope，unaveraged wave－ form displays have an inherent tendency to look noisy

So，when you see a noisy wave－ form on a digital scope，you have to keep in mind that some of the noise is due to sampling and dig－ itizing resolution（quantizing noise），and some of it is actual noise on the waveform．With an analog scope，when you see noise on the waveform，you know that all of the noise（at least up to the scope＇s bandwidth）is actually part of the waveform．

Cursor differences

Measurement cursors are lines or dots that can be positioned on a scope＇s display to measure time and voltage differences．There are basically two cursor types： screen－based and waveform－ based．

Screen－based cursors are the easiest to implement and can ap－ pear on either analog or digital scopes．They can be positioned anywhere on the screen．Their readouts are simply the screen－ relative amplitude and time loca－ tions of the cursors．If the cur－ sors are placed on the waveform trace，the readouts also represent time and amplitude locations on the waveform display．But，if the display changes，you have to place the cursors back on the waveform in order to reestablish a measurement．

A smarter approach is to some－ how tie the cursors to the wave－ form．The cursors are then referred to as being waveform－ based．

In digital scopes，waveform－ based cursors are tied to the waveform＇s stored samples．This is where digital resolution limits can become quite apparent．As you position the cursors，they may appear to jump from point to point on the waveform．This will be most noticeable on pulse edges or other fast transitions where there are fewer samples．In fact，the sample resolution may be so poor that you won＇t be able to pick off reasonable 10% and 90% levels on the waveform for rise－time measurements．

To deal with that，many digital scopes，especially those with dot－ connected vector displays，use interpolation for cursor place－
ment. This allows you to place cursors between samples on the display for interpolated readout values.
An even smarter approach to the resolution problem is to tie the cursors to the waveform trace by direct measurement of inputsignal amplitude. An example of this is the SmartCursors appearing on some Tektronix analog scopes.

The SmartCursor system uses a built-in, microprocessor-controlled cursor/voltmeter system. The cursor readouts not only reflect measurements of the actual signal, but the cursors are smart enough to follow signal changes. That allows you to tune circuits for precise signal amplitudes simply by making circuit adjustments until the scope's cursor readout reaches the desired value. It's just like using a voltmeter, except that the analog scope's cursors show you exactly where on the waveform the measurement is being made. In fact, the SmartCursors include automatic placement on the waveform by simply pressing buttons for peak, peak-to-peak, and other commonly needed waveform measurements.

Integrated measurements

Cursors are just the beginning of the measurement capabilities that can be integrated into an analog oscilloscope. Along with automatic placement, cursor measurements can also be gated on and off over selected portions of the waveform. That allows various waveform features or aberrations to be included in or excluded from the measurements as desired.
Another analog scope innovation involves integration of precision counter/timer measurements. Figure 6 illustrates the use of this function in a gated measurement.
In Fig. 6, the counter/timer is measuring the width of a narrow spike that's barely visible in the waveform photo. (The spike would appear clearer if you were looking at the actual CRT display.) The timer measurement area has been restricted to the spike (gated) by placing the intensified zone of the trace on the spike.
The intensified zone shows you

FIG. 6-THE ANALOG PRECISION of a gated width counter measurement allows a narrow spike (276 ns) to be measured with nanosecond resolution, even at a $1 \mathrm{~ms} /$ division sweep speed. A digital scope would need a 10-megapoint record length for the same resolution on the same display.
exactly what the counter/timer is measuring. A stand-alone counter/timer, by contrast, doesn't provide you with that kind of positive visual indication of exactly what is being counted or timed.
Another plus is that an integrated counter/timer function can provide higher measurement precision than a digital scope. In the case of the scope display shown in Fig. 6, the $200-\mathrm{MHz}$ counter/timer has a crystal-controlled accuracy of 10 ppm (0.001%). That allows nanosecond timer measurements on even the slowest scope sweep speeds. Timing measurements with a digital scope's cursors, by contrast, are constrained to the sample interval resolution.

Programmability

The types of integrated analog scope measurement features discussed here would be next to impossible to implement in a purely analog environment. Controlling and coordinating the data concerning the various scope and measurement functions can be done far more efficiently with a built-in microprocessor and digital methods.

Digital control does not mean. however, that the waveform must be digitized in order to be dis-
played. The real-time benefits of the analog signal path and display can be maintained while the remainder of the scope is designed to take advantage of digital control. That is apparent in Fig. 3, where the digital control buses extend to all of the major scope functions except the analog signal path itself.

All of the programmability features that are normally found in a digital scope-automatic setup. storing and recalling front-panel settings, programmed control from a bus-connected computer, and being able to output a waveform to a printer-can also be found in an analog scope. So, unless you absolutely need the capability of digital waveform storage, an analog scope could very well be your best choice. The best way to decide, however, is to get a demonstration of both types of scopes on the particular types of waveforms that you deal with regularly. Then you can make an informed decision on the best scope for your needs.

If you still aren't sure whether or not a digital scope is worth the expense, consider what you might do with the money you save if you buy an analog scope. Perhaps there's some other test equipment that your workbench is sorely lacking.

R-E

JOE JAFFE

THE AVERAGE HUMAN HEART CAR ries out its pumping action over 100,000 times every day．Gener－ ating its own electric signals to actuate the heart muscles，the heart contracts and relaxes dur－ ing each beat．We will show you how you can convert the hearts motion into audio sounds using ultrasound electronics with our Doppler ultrasonic stethoscope． For less than \＄150 you can build this educational instrument which will help you learn more about human physiology．

In 1957，an article in The Jour－ nal of the Acoustical Society of America described how cardiac functions could be inspected by the use of Doppler ultrasound using a frequency of about 2 MHz ．The Doppler effect is the change in frequency of sound， light，or radio waves that occurs when a transmitter and receiver are in motion relative to each other．When a transducer sends an ultrasonic beam into the body， a portion of the energy is reflected back by internal body structures． If the structure moves，the fre－
quency of the reflected beam is ct－anged in proportion to the ve－ locity of the movement

Almost thirty years ago this technology was developed into a valuable and completely harmless tool for non－invasive examination of movements in－ side the body by the medical pro－ fession．Experiments have shown that beaming very low－en－ ergy high－frequency sound into the body is not harmful．The technique is used all over the

[^2]world to listen to the heart beat of unborn babies in a mother＇s womb．Now you can listen to the characteristic Doppler sounds from your own heart which can be heard with an easily built Dop－ pler ultrasonic stethoscope．It is important to note that this in－ strument is for experimentation and entertainment．

Piezoelectric background

Transducers are devices which change one form of energy into another form．Some transducers are reversible，meaning they can change energy forms in either di－ rection．Piezoelectric trans－ ducers are reversible．They can change electric energy into me－ chanical energy and mechanical energy back into electric energy． The quartz－crystal oscillator is a familiar piezoelectric transducer， which is used as a highly stable and accurate frequency source．

Early phonograph pickups used piezoelectric Rochelle－salt crystals．Both quartz crystals and Rochelle－salt crystals are naturally occurring materials．

FIG. 1-THE TRANSMITTER CIRCUIT. Q1 is an RF oscillator whose $\mathbf{2 . 2 5 - M H z}$ frequency is determined by C4 and T1. A secondary tap on T2 provides a low-impedance output to drive XTAL. 1 in the transducer.

When either of those materials are excited by an applied voltage. they change in dimension or exert pressure if they are constrained from movement. When pressure is applied to these materials, they generate voltage. One of the first applications of piezoelectricity was developed by Professor M.P. Langevin during World War I when he was commissioned by the French to find a way to locate enemy submarines. He solved the problem by developing an underwater piezoelectric microphone.

About 50 years ago the first synthetic piezoelectric materials were developed. Today, commonly used synthetic piezoelectric materials include barium titanate. lithium sulfate, lead niobate, and
lead zirconate-titanate. Even quartz crystals can now be manmade.

The stethoscope

The basic component of the stethoscope is the transducer. which contains two lead zirco-nate-titanate piezoelectric crystals. One of the crystals is energized by the output of a 2.25 MHz oscillator/amplifier so that it expands and contracts at that frequency, setting up pressure or sound waves that are transmitted into the body. When that wave, which is very directional, passes from one medium to another in the body, a portion is reflected back to the second crystal, which generates a voltage. If the reflecting surface is stationary,
the voltage generated by the receiving crystal has the same frequency as the transmitted wave. If the reflecting surface is moving away from the transducer, the reflected frequency is lower than the transmitted wave. Similarly. if the reflecting surface is moving toward the transducer, the reflected frequency is higher. By mixing a portion of the transmitted frequency with the received frequency, the received frequency is modulated in both frequency and amplitude. Using an ampli-tude-modulated (AM) detector. we can obtain an audio signal whose frequency is proportional to the velocity of the moving structure within the body.

Circuit operation

The transmitter circuit is shown in Fig. 1. An RF-oscillator built around 91 operates at about 2.25 MHz . Positive feedback is provided from a secondary tap in T1 to the emitter of Q1. The frequency is determined by C3 and the inductive tuning of Tl . The oscillators' output is coupled through C5 to g 2 . an inductivelytuned RF amplifier. A secondary tap on T2 provides a low-impedance output to drive the transmitter crystal XTAL1 in the transducer. The ultrasonic power generated is less than 15 milliwatts per square centimeter of transducer surface.

The receiver and audio circuits are shown in Fig. 2. The receiver uses two identical stages of in-ductively-tuned RF amplification. The voltage generated in the

FIG. 2-THE RECEIVER AND AUDIO.AMPLIFIER. The receiver uses two identical amplifier stages, with a total gain of 1000 . IC1 is a low-power amp which can drive up to two headsets. Bass boost is provided by R17-C18 as many sounds generated by the Doppler effect are in the low audio range, so reducing the gain at higher frequencies improves the signal-to-noise ratio.
receiving crystal XTAL2 is cou－ pled to Q 3 through C8．and the output of 33 is coupled to 34 through C11．The combined RF gain for the two stages is about 2000．The modulated Doppler signal is detected by D1 to pro－ duce audio frequencies in the $50-2000 \mathrm{~Hz}$ range．

A low－power audio amplifier， IC1，can drive one or two head－ sets．It has a gain of 100 ，which is set by C17－R16 with some base boost determined by C18－R17，as many of the sounds generated by the Doppler effect are in the low audio range．The volume may be adjusted by potentiometer R25 at the input of IC1．The output of the amplifier goes to Jl where the headset is plugged into．If two people wish to listen at the same time，a Y－jack can be used．For classroom demonstrations．an external amplifier with speakers can be plugged in．

The transducer

The construction of the trans－ ducer is shown in Fig．3．The two crystals of lead zirconate－titanate （Vernitron or Channel Industries PZT5A）are $1 / 2-\times 1 / 4-$ inch rec－ tangles approximately $1 / 32$－inch thick．Silver electrodes are depos－ ited on each crystal surface，and a small silver trace is carried around from one side to the other side so electrical connections to both electrodes can be made on the same side of the crystal．Fine wire，number 36 AWG or smaller． is soldered to each of the elec－ trodes using a silver－bearing sol－ der to avoid lifting the silver electrode from the ceramic crys－ tal surface．Those wires are con－ nected to the terminals of XTAL1 and XTAL2 on the circuit board． Use a minimum of solder to avoid changing the resonance charac－ teristics of the crystal．

When dealing with ultrasound， the quantity of characteristic acoustic impedance is used in solving various problems dealing with waveform generation，prop－ agation，and detection．Charac－ teristic acoustic impedance w is defined as

$$
w=\rho c
$$

where ρ is the density of the me－ dium in $\mathrm{kg} / \mathrm{m}^{3}$ and c is the sound velocity in m / s ．The charac－ teristic acoustic impedance is． therefore，expressed as

FIG．3－TRANSDUCER CONSTRUCTION．Silver－bearing solder is used to avoid lifting the siker electrode from the ceramic crystal surface．Energy conversion is most efficient when crystals are＂air－backed＂resulting in energy being radiated from the front of the crystal．

FIG．4－THE AUTHORS＇PROTOTYFE． Nixte that LED1 and S1 are mounted on the foil side of the PC board．The transducer is mounted on the end plate of the enclosure with its leads close to their solder pads．

CRYSTAL SOURCES

The Piezoelectric crystals （PZT5A）mentioned in this articte can be purchased from the follow－ ing sources：

Channel Industries

639 Ward Dr．
Santa Barbara，CA 93111
（305）967－0171
Vernitron Piezoelectric Div．
232 Forbes Rd．
Bedford，OH 44146－5478
（216）232－8600
$\mathrm{kg} / \mathrm{m}^{3} \times \mathrm{m} / \mathrm{s}=\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$ ．
To obtain maximum energy conversion efficiency，the crystals should be acoustically matched with the plastic panel．When two mediums are closely matched． most of the energy will be trans－ mitted through the materials． When an ultrasonic beam meets an interface of dissimilar materi－ als，more of the energy is reflected where there is a large difference in the acoustic impedance be－ tween the two materials．

The acoustic impedance of the crystals is about 30 million and that of the body is 1.5 million． with air being less than 50 ，all in units of $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$ ．Because the den－ sity of air is so much lower than that of the crystal，and the ve－ locity of sound in air is much slower than in the crystal，almost all the energy is reflected at that interface when the back－side of the crystals are in contact with air．That difference in impedance results in most of the energy being radiated from the front of the crystal，and improved sen－ sitivity of the receiving crystal．
Just as you want most of the energy to be reflected at the rear of the crystal，it is desirable that most of the energy be transmit－ ted at the front surface of the crystal and into the body．Be－ cause the crystals are too fragile to be placed in direct contact with the body，they are cemented with epoxy to a sheet of plastic about $1 / 16$－inch thick，which should have an acoustic imped－ ance between that of the crystal and the body．This results in

FIG. 5-PARTS PLACEMENT. Mount and solder all components as shown here.
more energy being transmitted into the body instead of being reflected at the skin surface. When gluing the crystals to the plastic. be sure to exclude any air from the interface and use a minimum amount of glue. Sheet acrylic or fiberglass such as that used for PC boards, or a rigid vinyl sheet all have suitable acoustic impedances and provide the required protection for the crystals.

When more sensitivity is required, a dab of ultrasound gel is placed on the transducer face to improve the impedance match and exclude any air that may be trapped between the transducer face and the skin. Water or mineral oil will also work.

Construction

The authors' completed prototype is shown in Fig. 4. All the components, except the transducer, are mounted on a singlesided PC board as shown in the parts placement diagram in Fig. 5. An etched, drilled, and plated through PC board is available from the source mentioned in the parts list, or you can make your own board using the pattern provided. Note that LED1 and S1 are mounted on the foil side of the PC board. The volume control is mounted on the component side with the shaft going through the board. Use two $3 / 4$-inch long resistor cutoffs and solder them to

TP1 and TP2. After soldering the components on the PC board, the transducer is connected.

The transducer is mounted on the end plate of the enclosure with its leads close to their solder pads. Insert the end plate and transducer into the slot on the top half of the enclosure and solder the transducer leads to their appropriate terminals. Now install the 9 -volt battery. The stethoscope is now ready for tuning after you plug in the headphone.

Connect a frequency counter from the emitter of Gl to ground. Then connect a DMM, set on the $10-\mathrm{mA}$ range, between TP1 and TP2 and turn the instrument on. Your current meter should read less than 10 mA . Tune Tl to 2.3 MHz , then alternately tune T 2 and Tl to reduce the current to a minimum. If you don't have a frequency counter, tune Tl for a minimum current between TPI and TP2 and then alternately tune T1 and T2 for a lower minimum current. As the final current will be between 1 and 2 mA , use a lower 5 - or $2-\mathrm{mA}$ range when possible.

After you have correctly tuned T 1 and T 2 , turn off the instrument, remove the DMM and solder the leads of TP1 and TP2 together. Connect the DMM between the cathode of D1 and ground, using the 5 - or 10 -volt

PARTS LIST

All resistors are $1 / 4$-watt, 5%.
R1, R10, R13, R17, R23-10,000 ohms
R2, R4-33,000 ohms
R3, R6, R11, R14, R20, R21-100 ohms
R5, R22-27,000 ohms
R7-2200 ohms
R8, R15, R24-4700 ohms
R9, R12-68,000 ohms
R16-270 ohms
R18- 10 ohms
R19-27 ohms
R25-5000 ohms, volume potentiometer
Capacitors
C1, C6, C16, C21, C24-C26-33 $\mu \mathrm{F}$, 10 volts, electrolytic
C2-0.001 μ F, ceramic
C3, C5, C8, C11, C14-0.01 μ F, Mylar
C4, C7, C10, C13-10 pF, ceramic, NPO
C9, C12, C15, C19-0.047 $\mu \mathrm{F}$, Mylar
C17- $0.033 \mu \mathrm{~F}$, Mylar
C18- $10 \mu \mathrm{~F}, 10$ volts, electrolytic
C20, C23-220 $\mu \mathrm{F}, 10$ volts, electrolytic
C22-- 0.022μ F, Mylar
Semiconductors
Q1-Q4-2N3904 NPN transistor
D1-1N4148 diode
LED1-red light emitting diode IC1-LM386N low-power amplifier

Other components

T1-T4-MOS-E911 transformer (Sumida)
XTAL1, XTAL2- $1 / 2 \times 1 / 4 \times 0.035$-inch PZT5A (Vernitron or Channel Industries)
S1-SPST slide switch
Miscellaneous: 9 -volt alkaline battery, PC board, miniature stereo jack, 16 -ohm stereo headphone, and silver bearing solder.
Note: The following items are available from Products \& Processes, 9450 Mira Mesa Blvd., Suite \#B-321, San Diego, CA 92126 (619) 566-0711:

- A fully assembled and tested instrument with cassette$\$ 189.50$.
- A complete kit of all parts (without battery) including an assembled transducer, PC board, headphone, assembly manual, case, and cassette with typical sounds- $\$ 135$.
- An etched, drilled, and plated through PC board- $\$ 8.50$.
- A pair of piezoelectric crys-tals- $\$ 39.50$.
- Four MOS-E911 transformers (T1-T4)-\$12.
California residents add $81 / 4 \%$ sales tax. Add $\$ 5.00$ shipping and handling.

THIS IS THE SOLDER side of the PC board.
range. Alternately tune T3 and T4 for a maximum voltage, which will vary between 1 and 2 volts.

If you don't have a frequency counter or DMM available, you can tune the stethoscope while listening to your heart. With the transducer and headphones connected to the circuit board, put a little mineral oil or ultrasound gel on the face of the transducer and place the transducer firmly on your chest near your heart. Try to place the transducer between a pair of ribs rather than directly over a rib. Turn the volume up until you hear some Doppler sounds, which will probably be low, as well as a hissing noise. Alternately tune T1-T4, starting with T3 and T4, to increase the volume and reduce the hissing. Turn down the volume control during this tuning to prevent overloading and distortion.

If you don't hear any sounds with the above procedure, put a few drops of water on the transducer face and rub it with your finger. If that doesn't produce any sounds, check the circuit board for solder bridges and cold solder joints.

Testing and use

As mentioned earlier, maximum sensitivity is obtained when there is a good impedance match between the transducer face and the skin, with no air is trapped between them. A liquidgel such as Aquasonic is specifically made for that purpose and is available at medical supply stores.

Apply a small amount of liquid gel to the transducer surface and place the transducer firmly against the bare chest, several inches to the left of the center and about 10 inches below the shoulder. Place the transducer so the ultrasonic beam passes between two ribs for best transmission. You will hear the sounds associated with the movement of the heart. Keeping the transducer firmly against the chest and changing the direction of the ultrasonic beam you will hear different sounds depending on what surfaces are in the path of the beam. When you take a deep breath the sounds may disappear because the lungs fill with air, covering a portion of the heart. As previously noted, air is a poor conductor of high-frequency sound.

There are many aspects of heart action. First, returning blood from the venous system fills the right atrium. A valve connecting this atrium to the right ventricle then opens and contraction of the atrium forces the blood into the ventricle. The valve then closes and another valve connecting the ventricle to the pulmonary artery opens. The right ventricle contracts, forcing blood into the pulmonary system to return carbon dioxide to the lungs to be exhaled and to pick up oxygen from the air we breathe in. The blood then returns to the left atrium where it is pumped into the left ventricle through another valve. Finally the left ventricle contracts.
pumping blood into the arterial system to feed the body and the heart itself.

Each of the four chambers of the heart contract and relax at different times of the heart cycle. Their associated valves open and close synchronously. The movement of all those structures and the movement of blood through them provide the Doppler sounds which you hear with the Doppler ultrasonic stethoscope.

When you move the transducer across the skin you'll hear some scratching sounds. To avoid this, turn the volume down while you move the transducer.
Because there is attenuation of the sound wave as it passes through the body, those with a heavy build may have to try alternate body positions to bring the heart closer to the chest wall. Two suggested positions are lying on the left side or leaning forward in a sitting position.

When listening to the heart with Doppler ultrasound a number of different sounds are heard, one after the other, in rapid succession as the heart chambers and valves move and the blood flows through them. One can listen to blood flow separately from other sounds by placing the transducer on the neck where you feel the pulsation of the carotid artery. Because the artery is small compared to the heart, it will take some time to learn how to orient the transducer in the direction of blood flow through the artery. You must use the gel for that experiment. You may be able to hear a slight change in blood flow corresponding to the dicrotic notch in the pulse wave.

Blood flow sounds may also be heard from the brachial artery in the arm on the inside of the elbow. That is the location where the physician places the stethoscope when measuring blood pressure. The transducer is again oriented in the direction of blood flow and gel must be used. When listening to the blood flow in the brachial artery, you may want to try an experiment. Clench your fist to stop the flow of blood in the hand for about 5 or 6 seconds. When the fist is unclenched the blood flows again and you will hear some interesting wind-like sounds.

R-E

IF YOU THOUGHT A MUSIC ON-HOLD feature for your telephone was only for high-budget professionals, think again. We'll show you how you can add FM music onhold to any analog telephone line with a Touch Tone telephone. It's ideal for home offices or for people who want to project a hightech appearance.

Some of the features of this design include: LED status indicator, audio volume control, builtin antenna, only one operating adjustment, and a mute function to eliminate "hiss" in between stations. You can build this impressive device in under three hours, for only $\$ 70$.

Construction, test, and alignment is made easy due to the use of specialized IC's, namely a single FM receiver chip, IC4, and a DTMF decoder, IC1. There are no special coils to wind, and no tricky circuit adjustments are required. All you need is a DMM to test and align the circuit. Let's now take a look at how the unit works.

On-hold circuit

A block diagram of the unit is shown in Fig. 1, and the schematic in Fig. 2. The FM on-hold device connects to an analog telephone line via an RJll modular jack. It's powered by an external +15 -volt DC, $150-\mathrm{mA}$ power pack that plugs into a standard $120-$ volt AC outlet. The 15 -volt DC supply passes through polarityprotection diode Dll to the input of IC5, a $7812+12.0$-volt DC voltage regulator. Capacitors C24 and C25 provide decoupling and anti-oscillation protection for the regulator. The regulated output of IC5 is fed to the input of IC6, a 78 L 05 voltage regulator, to provide a 5 -volt supply for IC4, a TDA7000 FM receiver. Decoupling and anti-oscillation protection for IC6 is provided by C26. Voltage divider R16-R17 provides the +6 -volts DC power-supply output, which is filtered by C28.

When a key on any Touch Tone telephone is depressed, the signal is passed through IC3-d. an LM324N balanced amplifier. The purpose of this amplifier is twofold; it acts as a balanced to unbalanced matching network, and its gain is set to 0.1 to act as a line-voltage attenuator. Capacitors C 1 and C 2 block the phone
line's 48 volts DC from entering the amplifier. The ring-ing-voltage is limited by Rl and R2. The ratio of R 3 to R 1 sets the gain of IC3- d to 0.1. Resistor R4 biases IC3-d between its supply voltage and ground allowing, it to operate from the single +6.0 volts DC powersupply line. The output of the balance amplifier passes through coupling capacitor C3 and is then decoded by ICl, a Motorola MC145436 dualtone multi-frequency (DTMF) decoder IC.

The output of ICl is a 4-bit word, whose codes are listed in Table 1. It is connected to IC2b, a 4082 dual quad-input and gate, so that the output of that IC (pin 13) is normally low, and goes high only when the "*" key is pressed. Therefore, when the "*" key is decoded by IC1, pins 1,2 , and 13 are high while pin 14 is low. To switch the output of IC2-b high, four logic-high inputs must be present. The high inputs are provided by ICl pins 1,2 , and 13 and IC2-a pin 1.

In order for IC2-a's output to go high, it must also have four logichigh inputs. Two of those are provided by R7, D10, and C27. Those components ensure that the internal power supply is operating. That will prevent the unit from seizing the phone line if power is lost or removed while it is connected to the phone line. The remaining two inputs are provided by a logic high from ICl pin 12, which is the dV, or data valid, output pin. Dv assures proper operation of ICl by providing internal checks. When those checks are valid, $D v$ will output a logic high. That prevents false triggering due to voice or other tones,

such as music, that occur during normal telephone usage.

When the "*" key is depressed, IC2-b pin 13 goes high, which in turn charges $C 4$ and turns on switching transistor Q 1. That activates relay RYl. Diode Dl prevents DC voltage from bleeding back into IC2-b pin 13. The timebase oscillator for ICl is formed from a $3.58-\mathrm{MHz}$ crystal XTALl and R5.

The normally open contacts of RY1 close and D7, R9, RY2, R10, C5, LED1, transformer Tl (Sec), and the four diodes from the polarity bridge (D3-D6) are connected across the telephone line and effectively "seize" it. That combination of components is referred to as the seizure network. The unit is now in a "standby" mode and LED1 lights dimly. If jumper Jl is in the IN position and a station is tuned in on the FM tuner, that station will be heard on the telephone line. If Jl is in the OUT position, the station will not be heard until the phone is hung up.

RY1 will stay activated for approximately four seconds. That

> Impress your callers by adding an FM music on－hold feature to your telephone．

To return to the call，the tele－ phone can be picked up．The loop current flowing through the seizure net－ work is reduced because of the double termina－ tion the tele－ phone and sei－ zure network）． RY2 deactivates， and the seizure network is dis－ connected． Kick－back ca－ pacitor C5 en－ sures the loop current is re－ duced below the drop－out cur－ rent for RY2． That reduction in current turns off LED1，dis－ connects the music，and re－ connects the caller．

If the tele－ phone is not hung up within the four－second time－out period， RY1 will deacti－ vate and the project will be taken out of the ＂stand－by＂ mode and placed in the
delay is determined by the RC network of R6－C4．Diode D2 pre－ vents relay－coil induction－induc－ ed＂spikes＂from appearing on the +12 －volt DC power－supply line．

If the telephone is hung up within the four－second time－out period，additional loop current will flow through the seizure net－ work and activate RY2．That causes normally open contacts of RY2 to close．The project is now in the＂on－hold＂mode．LED1 will be brightly lit，and the selected radio station will be heard in the telephone line regardless of the position of jumper Jl．After the four－second time－out period，RY1 will deactivate．The loop current flowing through RY2 keeps the seizure network across the tele－ phone line and the unit remains ＂on－hold．＂
＂normal＂mode． LED1 will not be lit，and the caller will be disconnected if the tele－ phone is hung up．

Latching push－button switch Sl is used to tune in the desired station．When it is in the IN posi－ tion，the seizure network is placed across the telephone line and the output of the tuner is also connected（regardless of the status of J1）．That allows you to hear the output of the FM tuner and adjust the station tuning and volume．（A feature of the re－ ceiver is the elimination of inter－ station＂hiss，＂therefore no audio will be present until a station is tuned in．）

FM receiver circuit

At the heart of the receiver cir－ cuit is IC4，a TDA7000 Signetics FM receiver．This IC has a fre－
quency－locked loop system with an intermediate frequency（IF）of 70 kHz ．The IF can be chosen by active RC filters．The only func－ tion that needs tuning is the os－ cillator＇s resonant circuit，which selects the reception frequency．

The antenna is made up from the telephone line and the RJll cable．The RF signal travels through that path and is coupled via DC blocking capacitor C6 to the RF input bandpass filter．This broadband low－G filter consists of $\mathrm{C} 10, \mathrm{C} 11$ ，and L1．Its primary pur－ pose is to pass RF energy in the $88.0-$ to $108.0-\mathrm{MHz}$ range while attenuating RF energy from above and below that frequency range．The bandpass filter serves to suppress potential interfering energy from outside the commer－ cial FM broadcast band．
The bandpass filter also acts as a split－capacitor（also known as a tapped capacitor）input imped－ ance－matching network to IC4．It matches a 75 －ohm RF input im－ pedance to IC4＇s 1.5 K input im－ pedance．The reverse RF input is decoupled by C12．

After the RF signal passes through the input bandpass fil－ ter，it goes to the input of the in－ ternal Gilbert cell mixer where it is mixed with the local oscillator （LO）signal．As mention ed earlier， the frequency of the LO is de－ signed to produce an IF of 70 kHz ．The tunable LO，connected between pins 5 and 6 of IC4，con－ sists of tank components L2 and D9．

Varactor diode，D9，is DC－volt－ age tuned by the voltage－divider circuit consisting of R13，R18， and R12．The low end of the tun－ ing range is set by R13 while the high end is set by R12．A high impedance path to the oscillator is provided by R11，keeping it from appearing on the DC tuning control voltage．C21 acts as an RF ＂short＂to ground which prevents the oscillators RF from entering D9．The IF output of the mixer is routed to a three－stage broad－ band low－Q IF filter network．

The first section（C20 and C19） determines the cut－off frequency for the second－order low－pass IF filter．The second section（C8 and C7）determines the upper and lower passband．The third sec－ tion（C9）determines the pass－ band of the third section of the low－pass filter network．

FIG. 1-THIS IS THE BLOCK DIAGRAM of the FM on-hold unit. The circuit consists of three basic sections; a DTMF decoder/on-hold logic, seizure network, and an FM receiver.

After the signal is passed through the IF filter section, it is demodulated. The quadrature detector is tuned by C14. The fre-quency-locked loop (FLL) filter, which suppresses IF harmonics and prevents them from appearing at the output of the demodulator, is controlled by C18.

The demodulated audio signal from pin 2 passes through a deemphasis network consisting

All resistors are $1 / 4$-watt, 5%.
R1, R2, R11-100,000 ohms
R3, R4, R7, R13, R15- $10,000 \mathrm{ohms}$
R5-1 Megohm
R6-39,000 ohms
R8-2000 ohms
R9-2700 ohms
R10- $\mathbf{1 2 0 0}$ ohms
R12- 130,000 ohms
R14--20,000 ohms
R16, R17-470 ohms
R18, R19-100,000 ohms horizontal
PC-mounted potentiometer
Capacitors. All are 50 volts DC, 10\% tolerance, mono or ceramic disc unless otherwise indicated.
C1, C2, C6-0.022 $\mu \mathrm{F}, 250$ WVDC, 20\% tolerance
C3, C13, C17, C23-C26-0.1 $\mu \mathrm{F}$
C4, C27-10 $\mu \mathrm{F}, 10$ volts, 20% tantalum
C5- $-47 \mu \mathrm{~F}, 63$ volts, 20% electrolytic
C7, C20, C21-3300 pF, 50 volts
C8, C14-330 pF
C9-150 pF
C10, C11- 39 pF ceramic disc
C12, C22-2200 pF
C15-220 pF
C16, C18, C29-0.01 $\mu \mathrm{F}, 20 \%$
C19-180 pF
of C22 and R14. A load for the audio output current source is also provided by R14.

The audio signal passes through C23 and R15 to the inverting input of audio amplifier IC3-c. Feedback resistor R19 controls the gain of the amplifier from 0 to 10. Transformer Tl matches the amplifier's output impedance to the telephone line impedance.

PARTS LIST

C28-100 $\mu \mathrm{F}, 25$ volts, 20% electrolytic
Semiconductors
D1-D7, D10, D11-1N4003, 1 amp 200 PIV rectifier diode
D8-not used
D9-MV209 varactor diode (Motorola)
LED1—Red LED
IC1-MC145436 DTMF decoder (Motorola)
IC2-4082 dual 4-Input and gate
IC3-LM324N quad op-amp
IC4-TDA7000 FM Receiver (Sig-netics-Philips)
IC5-7812 + 12-VDC, 1-amp regulator
1C6-78L05 +5-VDC, 0.1-amp regulator
Q1-MPSA13 NPN Darlington transistor
Other components
$\mathrm{L} 1-0.138 \mu \mathrm{H}$ fixed inductor (Coilcraft no. 132-09 or 9T no. $241 / 8$ -inch ID)
L2- $0.060 \mu \mathrm{H}$ shielded variable inductor (Coilcraft no. 150-02J08S or TOKO no. MC122)
RY1, RY2-DPDT relay 12 VDC (Aromat no. DS2YE-S-DC12)

TABLE 1-DTMF DECODER
OUTPUT CODES

Digit	D8	D4	D2	D1
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
\star	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\#$	1	1	0	0
A	1	1	0	1
B	1	1	1	0
C	1	1	1	1
D	0	0	0	0

Construction

The author's prototype is shown in Fig. 3. The entire FM on-hold circuit is mounted on one double-sided PC board. The use of a single-sided board will work as long as the jumper wires are added to the top where necessary. We recommend that a PC board be used because of the VHF range involved in this project. We have provided foil patterns of the

T1-audio transformer, 500 -ohm primary, 200-ohm secondary (Mouser no.42TM002)
S1-DPDT latching push button switch
XTAL1-3.58-MHz parallel resonant crystal, HC-18/U case
J1-0.1-inch single inline jumper bar and strap
Miscellaneous: Male power jack, female PC board-mounted lug receptacles, 117-VAC power pack (15 VDC at 150 mA), PC board, 6 -foot modular line cord, male RJ11 to lugs, project case (Builder's Choice), and 3 14-pin IC sockets
Note: The following items are available from HESC Inc., P.O. Box 12649, Fort Wayne, IN 46864-2649, (219) 482-7190:

- A complete kit of parts including PC board, all components, machined plastic case, and power pack-\$69.95 + \$3.00 S\&H.
- An assembled and tested unit-\$119.95 + \$3.00 S\&H.

Send check or money order, IN residents add 5\% sales tax. Allow 6-8 weeks for delivery.

FIG. 2-SCHEMATIC OF THE FM ON-HOLD unit. The output of IC1, a DTMF decoder, is a 4bit word that controls the on-hold logic. The FM receiver, IC4, uses a frequency-locked loop system with a $70-\mathrm{kHz}$ intermediate frequency, which is tuned by a tank circuit consisting of L2 and D9. Spurious reception is eliminated by a mute circuit in the IC.
component side and solder side of the PC board if you wish to make it yourself. If you choose not to use a PC board, the use of a prototype style board is recommended. You should note that the use of wire wrapping will not work for the receiver portion of this project due to ground return path impedance problems. You can use IC sockets for all IC's except IC4, the TDA7000 FM receiver. The use of an IC socket at VHF frequencies should be avoided.

Figure 4 shows the parts-place-
ment diagram of the unit. Before you begin construction, there are a few things to keep in mind:

- Use proper soldering tech niques-The importance of proper soldering cannot be emphasized enough for VHF circuits. We recommend that the flux residue be removed from the completed PC board using a mild non-CFC cleaner that's not harmful to plastics. Always read the manufacturers label.
- Static sensitive devices-Observe electrostatic discharge precautions when handling individ-
ual semiconductors as well as the completed circuit board.
- Component leads-Pre-form component leads before installing them in the board.
- Non-polarized capacitorsWhen installing these components, orient them so their values can easily be read. This will help if troubleshooting is needed later on.
- Resistors-Mount resistors so they can be read from left to right and top to bottom. This also aids in troubleshooting.
- Tl-Bend the tabs flush against the PC board. The audio transformer has a "P" indicating the primary side. The primary mounts towards the outside of
the board. If in doubt. the primary should measure about 500 ohms.
- C6-Mount vertically with the body in the hole closest to D4 and D6.
- L1, L2-It's important the shield have a good electrical connection with the PC board mounting pads. Don't leave the soldering iron on too long as this plastic part might melt.
- IC4 (TDA7000)-When soldering this chip, be careful not to keep a hot soldering iron on the pins too long.
- LED1-For proper mounting height of the LED, cut two $1 / 2$ inch pieces of insulating tubing. Insert the tubing over both leads. Install the LED with the flat side (short lead) toward T1.
- D9-Mount flush against the board. That will minimize any stray capacitance effects.
- IC sockets-Mount three 14pin IC sockets (IC1-IC3) flush against the board. Orient the notch towards pin 1, which is indicated on the component side of the board.
- XTAL1-The leads of this crystal can be connected either way to the PC board. Mount it in the vertical position. Do not bend the leads where they exit the body.
- RY1, RY2-These relays are the same type, so they re interchangeable.

The following pre-test steps should be done after all components have been installed. Check that all components are mounted in their proper location. Verify polarized components are properly oriented and that all pads and connections have been properly soldered and de-fluxed. Once those steps have been completed, you can begin bench testing.

Testing and alignment

The only instrument needed to test the unit is a DMM. Connect the power pack (or a +15 - to +28 -volt DC power source) to the DC input. Connect AC power to the power pack. Don't connect the unit to the phone line at this time. Next, verify proper operation by making the check out measurements indicated in Table 2. After you have made those measurements, you can proceed with the alignment.

You'll need a plastic alignment tool, a signal source in the FM

FIG. 3-THE AUTHOR'S PROTOTYPE. Do not use an IC socket for IC4, and be careful when soldering it as excessive heat can damage the chip.

FIG. 4-PARTS-PLACEMENT DIAGRAM. Install all components as shown here. Make sure all components are correctly oriented. The telephone tip and ring conductors can be connected at either phone-line input.
broadcast band, and a method to hear the audio output. The simplest way of aligning the unit is to connect it to the phone line. The unit was designed to not be sensitive to the tip and ring polarities. Therefore, it doesn't matter which phone lead connects to which terminal on the PC board.

Once the phone line is connected, dial your own number to eliminate the signal tone and offhook warning tone. Turn the receiver on by depressing push button switch S1. Set the tuning potentiometer to the extreme counter clockwise position (low end of the band). Note that due to the mute function. there is si-
lence until a station is received.
Turn the volume control potentiometer $1 / 2$ and $3 / 4$ clockwise. Adjust the slug in L2 until the station operating at the lowest dial setting in your area is received with the loudest audio output. Use care when adjusting the slug as it is quite delicate and can easily be broken.

Next, set the tuning potentiometer to the extreme clockwise position (top end of the band). Tune back down towards the bottom end of the band (counter clockwise) until the station operating at the highest frequency is received.

Tune through the entire range

COMPONENT SIDE foil pattern shown actual size．

SOLDER SIDE foil pattern shown actual size．

TABLE 2－CHECKOUT MEASUREMENTS

Parameter	Low Limit	High Limit	Actual Reading
Output of Power Pak	＋13．50	$+28.00$	＿VDC
Input Current	31.00	34.00	mA
IC5 output	＋11．40	＋ 12.60	$\cdots \mathrm{VDC}$
IC6 output	＋4．75	＋5．25	V VDC
＋6．0 VDC output	＋4．50	＋6．50	＿VDC
IC3－d pin 12	＋4．50	＋6．50	＿VDC
IC2－a pin 2	$+4.50$	＋6．50	＿＿．＿VDC
IC1 pin 3	$+4.50$	＋6．50	－V VDC
IC2－b pin 14	$+4.50$	＋6．50	＿VDC
IC3－c pin 10	＋4．50	$+6.50$	＿VDC
IC3－d pin 4	＋ 11.40	＋ 12.60	＿＿＿VDDC

to verify all stations available to your area are being received．The receiver section was designed with a mute function built－in to allow only the strongest stations to be received．That makes tun－ ing easier and suppresses im－ ages（＂ghost＂stations that ap－ pear in the wrong part of the tuning dial）．Release the push－ button and hang up the phone．

You can check for proper opera－ tion by having a friend call and be placed on hold by depressing the star＂＊＂key（LED1 lights dimly） and then hanging up the phone．

Installation and use

A special feature of this project allows you to select when the mu－ sic is present in the handset． Some telephone services（call waiting，call forwarding，voice mail）require the use of the＂＊＂ key．With Jl in the OUT position （circuit open），music will not be heard in the handset when the ＂＊＂key is depressed．It will，how－ ever，be heard by the caller when the phone is hung up．With Jl in the IN position（circuit closed）， music will be heard every time the＂＊＂key is depressed．Install the jumper according to your available service requirements．

If you would like to connect an external antenna or RF source， such as cable，to the tuner，you can connect it to the junction of $\mathrm{C} 6, \mathrm{C} 10$ ，and C11．It may be ad－ vantageous to disconnect the phone－line antenna by breaking the connection at C 6 ．

It＇s easy to use the FM on－hold unit．To place a caller on hold press the star＂＊＂key on any Touch Tone telephone．That places the unit in a standby mode and the LED lights dimly．The telephone must be hung up with－ in four seconds for the caller to be placed on hold．When that＇s done， the LED lights brightly．If it＇s not hung up within 4 seconds，the unit resets itself and the LED goes out．The caller will be dis－ connected if the phone is hung up．

After a caller has been placed on hold，all you have to do is pick up the telephone to return to the conversation（any telephone con－ nected to the line，Touch Tone or rotary）．When the handset is picked up，the brightly lit LED will extinguish，the music will go off，and you will be connected to the caller．

R－E

Find out more about magnetic phenomena and how inductance is related to the magnetic field.

in OUR LAST EDITION. WE DISCUSSED the characteristics of a static magnetic field in empty space. In this article we'll look further into the B field and its effects on matter. Of particular importance, we will show that the magnetic field in matter can be found by using the linear superposition of free and bound current densities.

Potential

If you recall, the expression $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}$ says that the apparent rotation of the \mathbf{B} field around a small region about a point is proportional to the current density in that region. Unless the current density or charge per unit area \boldsymbol{J} is zero, B cannot be the gradient of a scalar potential and therefore is not a conservative field. However, in regions that have no current flow. $\nabla \times \mathbf{B}=0$. In that case, the field is conservative and a scalar potential can be defined. Suppose a small current loop, the B-field instrument \oint Idl, is moved quasistatically from point A to B in such a region as shown in Fig.

WILLIAM P. RICE

1. The force in the direction of motion dL gives the work done or change in magnetic potential energy

$$
\Delta U_{a b}=-\int_{a}^{b}[(\phi|d|) \times \mathbf{B}] \cdot d l
$$

The work depends not only on the path taken but on the orientation of \oint Idl along the path. No work is done if $(\oint \mathrm{Id} \mathbf{l}) \times \mathbf{B}$ is always perpendicular to $\mathrm{d} \mathbf{L}$. Work is done if, at any place along the path, \oint Idl is rotated so that $(\mathrm{fI} \mathrm{I} l) \times \mathbf{B}$ has some component parallel to $\mathrm{d} \mathbf{L}$. That is the mechanical energy due to the work done against the torque.

Additional energy is required to maintain the current I in the loop. If the loop has resistance R , then $\mathrm{I}^{2} \mathrm{R}$ is the rate of thermal energy loss. That energy must come from someplace. and if the magnetic field enclosed by the loop changes, more energy is required. We ll
discuss the reason why additional energy is required in our next article.

Previously, we saw that any field with zero divergence is the curl of some other field. Since $\nabla \cdot \mathbf{B}=0$, it must be that $\mathbf{B}=\Gamma \times \mathbf{A}$. The \mathbf{A} field is called the magnetic vector potential. It is not an energy field (energy is a scalar quantity), but it can be used in energy calculations. The main advantage in using the \mathbf{A} field is that calculations required to solve many realworld problems are simplified. Since we won't be doing any calculations here, we will just say that the \mathbf{A} field is real in the same sense as the \mathbf{B} field.

We can use the analogy that the \mathbf{A} field describes action at a distance from the \mathbf{B} field just as the \mathbf{B} field describes action at a distance from a current loop. The \mathbf{E} field is also used to describe action at a distance from an electric charge. An appropriate instrument can be placed in a region of an \mathbf{A} field, even through the \mathbf{E} and \mathbf{B} fields are

FIG．1－A MAGNETIC DIPOLE IN A B FIELD is moved from point A to B along the path composed of d_{L} ．The force vector on any small segment of the current loop is $\mathrm{dF}_{\mathrm{m}}=\mathrm{IdI} \times \mathrm{B} . \mathrm{dF}_{\mathrm{m}}$ is directed out of the page as is the total force $F=f \mid d l \times B$ ．The force vector is perpendicular to dL ，so the work done on $F \cdot d_{L}$ is zero．If the dipole is rotated so that F was not normal to the paper，then work would be done．
zero there，and an influence can be measured．The Bohm－ Aharanov effect is an example．

Magnetic＂current＂

Recall that $\nabla \cdot \mathbf{B}=0$ says that the lines of magnetic flux are closed lines．Nothing material flows along these lines but we can make an analogy with the closed path of a constant electric cur－ rent．The magnitude of B in the magnetic circuit of Fig．2－a can be found from $\oint \mathbf{B} \cdot \mathrm{dL}=\mu \mathrm{I}$ ，where L is the total length of the mag－ netic path，μ describes a prop－ erty of the path material to be discussed later，and I is the total electric current enclosing the path．There are n turns of wire each carrying current I_{O} so $\mathrm{I}=\mathrm{nI}_{\mathrm{O}}$ ．Since the material is uniform，the magnitude of \mathbf{B} must be independent when dL is being summed．So，denoting the magnitude of B as B and summing by integration gives

$$
\mathrm{BL}=\mu \mathrm{n} \mathrm{I}_{\mathrm{o}}
$$

The magnetic flux is

$$
\mathrm{d}=\int \mathrm{B} \cdot \mathrm{ds}
$$

where s is the cross－sectional area of the path．Since the area is uniform

$$
\phi=\mathrm{BS}=\frac{\mathrm{n} \mathrm{l}_{0}}{\mathrm{~L} / \mu \mathrm{S}}
$$

In the circuit shown in Fig．2－b， a current I exists in a material of length L．conductivity σ ，and cross－sectional area S．The volt－ age is supplied by n cells，consist－ ing of V volts each．From Ohm＇s law

a

b

FIG．2－MAGNETIC FLUX IS ANALOGOUS TO ELECTRIC CURRENT．In（a）the magnetic path of length L and cross－sectional area S is in a material of permeability μ ．The source of magnetomotive force $n I_{0}$ is the current I_{0} encircling the material n times．In（b）the electrical path is in a material of conductivity $(\sigma$ ．The source of electromotive force $n V$ is a battery of n cells each with a voltage V ．

$$
I=\frac{n V}{L / \sigma S}=\frac{n V}{R}
$$

The so－called magnetomotive force nI_{O} can be compared to the voltage nV ．The magnetomotive force is summed in the same way voltages are summed．μ is similar to σ ．which suggests that $\mathrm{L} / \mu \mathrm{S}$ is a magnetic resistance R_{M} ，called reluctance．Those facts，along with the motivating fact that electric current and magnetic flux form closed paths（implying a conservation of something），al－ low analogous magnetic circuit equations to be developed．

Magnetic field in materials

In any material there are small current loops or magnetic di－ poles formed by the atomic－scale rotational and orbital motions of the electrons and charges in the nuclei，as shown in Fig．3．The vector quantity Is（where s is the area of each atomic－current loop），is the magnetic dipole mo－ ment．Normally the magnetic di－ pole moments have random orientations，so no average or macroscopic magnetic field is present．

When a material is placed in an external magnetic field \mathbf{B}_{o} ，the quantum－wave functions are changed in such a way that there is a higher probability of the magnetic dipole moments being aligned antiparallel to the \mathbf{B}_{o} ，as shown in Fig．4－a．The direc－ tions may not all exactly align and may not be uniform except in what we call simple magnetic ma－ terials．The net effect is that mag－
netic poles appear at the ends of the material．We say the material has an induced magnetic field．a magnetic polarization，or simply that it is magnetized．This induc－ ed magnetic field is called the de－ magnetization field \mathbf{B}_{d} ．The total magnetic field in the material is $\mathbf{B}_{\mathrm{i}}=\mathbf{B}_{\mathrm{o}}+\mathbf{B}_{\mathrm{d}} . \mathbf{B}_{\mathrm{d}}$ is antiparallel to \mathbf{B}_{o} so \mathbf{B}_{i} has a smaller magnitude than B_{0} ．Such a material exhibit－ ing those characteristics is called diamagnetic．

In some materials there are ad－ ditional magnetic dipoles result－ ing from electrons with unpaired spins．Their magnetic dipole mo－ ments are normally oriented ran－ domly．When placed in an external magnetic field，the wave functions are changed in such a way that there is a higher proba－ bility of the magnetic dipole mo－ ments being aligned parallel to the \mathbf{B}_{o} as shown in Fig．$-4 b . \mathbf{B}_{\mathrm{d}}$ is aligned parallel to \mathbf{B}_{o} ，so \mathbf{B}_{i} has greater magnitude than \mathbf{B}_{o} ．A material exhibiting those charac－ teristics is called paramagnetic．

In many materials，when the external \mathbf{B}_{o} field is removed，the wave functions return to their original form within a short time and \mathbf{B}_{d} becomes zero．However，in ferromagnetic materials the wave functions don＇t return com－ pletely and in some regions， called magnetic domains，re－ sidual alignment remains．It is as if each domain supplies a \mathbf{B}_{o} to all other domains，thus maintain－ ing some \mathbf{B}_{i} in each．
\mathbf{B}_{d} is not a particularly useful quantity．If there are n magnetic dipoles per unit volume，then a

FIG. 3-ATOMIC-SCALE CURRENT LOOPS in a material form magnetic dipoles. The magnitude and direction are given by the magnetic dipole moment Is, where s is the area enclosed by the loop current I. The direction is given by the right-hand rule. Normally, the directions are random and no net magnetic field results.
measure of the total magnetic polarization is

$$
\mathbf{M}=\mathrm{n}(\mathbf{l} \mathbf{s}) \zeta(\mathbf{A} / \mathrm{m})
$$

called the magnetic dipole moment per unit volume (or just magnetization). ζ is a function of the average alignment of the dipoles with the external field and takes on values from - 1 for total antiparallel alignment to +1 for total parallel alignment. \mathbf{B}_{d} and \mathbf{M} are related by a factor that takes into account properties of the material.

We can use the idea of Ampere's law, which says the apparent rotation of a magnetic field around a small region is proportional to the current per unit area in that region, to account for the \mathbf{M} field. On an average, the atomic-scale magnetic-dipole currents cancel everywhere in a material except at the surface, as shown in Fig. 5. \mathbf{M} can therefore be attributed to a bound surface current I_{b} around an area of magnitude S in a material of length x . The magnitude of \mathbf{M} is simply the magnetic dipole moment per unit volume as illustrated by

$$
I_{D} S /(X S)=I_{b} / X .
$$

It's sometimes convenient to define a lineal-surface current density as

$$
\mathbf{K}_{\mathbf{b}}=\mathbf{M} \times \mathbf{N}(\mathbf{A} / \mathrm{m})
$$

where \mathbf{N} is a unit vector normal to the surface. The curl of M is found the same way Ampere's law for static currents was derived, except the current density of concern is the average atomic-scale volume current density bound in the material \mathbf{J}_{b}. That gives us the formula:

$$
\nabla \times \mathbf{M}=J_{b}\left(\mathbf{A} / \mathrm{m}^{3}\right)
$$

A convenient way to separate the external and internal contributions is to consider the total

FIG. 4-MATERIALS IN AN EXTERNAL MAGNETIC FIELD B_{o} exhibit magnetization. In (a), magnetic dipole moments tend to align antiparallel to B_{o}. Demagnetization B_{d} opposes B_{o} and the internal magnetic field B_{i} is smaller in magnitude than B_{0}. In (b), the dipole moments tend to align parallel to B_{o} due to unpaired electrons. B_{i} is greater in magnitude than B_{o}. In both cases the magnetization per unit volume M is related to B_{d}. The vectors are shown outside of the material for clarity.

FIG. 5-ELECTRIC CURRENTS associated with individual magnetic dipoles cancel inside the material. At the surface, however, the currents are in the same direction resulting in a net surface current $I_{b} . I_{b}$ is bound to the surface since it consists of pieces of the dipole currents bound in the material.
current density \mathbf{J} as a linear superposition of J_{b} due to the material and all other currents called the free current density \mathbf{J}_{f}. From Ampere's law, it can then be concluded that

$$
\begin{gathered}
\mathbf{J}_{\mathbf{f}}=\mathbf{J}-\mathbf{J}_{\mathbf{b}}=\frac{1}{\mu_{0}}(\nabla \times \mathbf{B})-\nabla \times \mathbf{M}= \\
\nabla \times\left[\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}\right] .
\end{gathered}
$$

The term in brackets is called the magnetic-field intensity or just the magnetic field (not to be confused with the \mathbf{B} field)

$$
\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M} .
$$

In simple materials, \mathbf{B} and \mathbf{M} are along the same line so $\mathbf{B}=\mu_{0}\left(1+x_{\mathrm{m}}\right)$ and $\mathbf{H}=\mu \mathbf{H} . x_{\mathrm{m}}$ is called the magnetic susceptibility and μ is the magnetic permeability of the material. A commonly used quantity is the relative permeability which can be written as

$$
\mu_{r}=1+x_{m}=\mu / \mu_{0}
$$

μ_{r} is less than 1 for diamagnetic
materials and greater than 1 for paramagnetic materials. In ferromagnetic materials, μ_{r} is very large but the \mathbf{H} and \mathbf{M} relationship is generally more complicated and μ_{r} is not a simple constant.

Ampere's law now says

$$
\nabla \times \vec{H}=\overrightarrow{J_{t}}
$$

This says that the apparent rotation of the H field around a small region is due to the density of free current through that region. One of Maxwell's great contribuiton was the modification of Ampere's law.

Inductance

We know that a conductive loop, enclosing empty space or some material, forms an inductor. If the loop is carrying a constant current I, then a proportional magnetic flux exists through the area s enclosed by the loop. The constant of proportionality is the inductance. in units of webers per ampere, or henrys
continued on page 87

LAST MONTH WE FINISHED OUR DIScussion on the circuitry. Now let's build the unit.

Construction notes

This is a simple project conceptually, but the wiring is comiplex, hence we recommend use of a PC board. Foil patterns are provided to make your own board; etched, drilled, and silk-screened boards are available from the source mentioned in the parts list.

Using Fig. 5 às a guide, mount all parts, except those mentioned below, on the component side of the board. The LED's should be shimmed so their domes are level with or slightly above S1.

DC power connector J2, a 3.5 mm coaxial jack, mounts on the foil side of the board, as do several configuration options (capacitor C4 and option-select jumpers JU1-JU5).

Mount in the position for C4 (on the foil side of the board) a two-pin header socket, and insert a 33-pF ceramic disc. Then mount three-position header pins at $\mathrm{JUl}-\mathrm{JU4} 4$, and a two-pin

Ease

microprocessor design chores with our under-\$200 logic-analyzer kit.
header at JU5. Insert header jumpers according to the information shown in Table 1. Check for and correct any wiring errors, but don't mount the board in the case yet.

Initial checkout

Before installing the PC board in the enclosure, perform the following tests:

1) Use an ohmmeter to verify that the reading between +5 V and ground is greater than 20 ohms.
2) Plug in the wall-mount power transformer and ensure the presence of +5 volts between pin 20 and pin 10 of ICl .
3) With no test clip installed, verify that all LED's are blinking. If not, check whether pin 8 of IC6 is oscillating at about 2 Hz .
4) With one side of a test clip attached to ground, momentarily touch the other side to each address and data input. Verify that the corresponding LED goes out, and that the remaining LED's continue to blink.
5) Verify the correct logic level for the wait or ready line.

JIM COOKE

FIG. 5-MOUNT ALL COMPONENTS as shown here. Note that C4, J2, and all five jumper headers mount on the foil side of the board.

FIG. 6-CONNECT MICRO-MON to the target system directly, or insert a resistor in series with the waIt line.
6) Verify that when S1 is in the "run" position, an oscilloscope probe attached to the wait connector (J4) measures a logic one (5 volts), and when in the "stop" position, a logic zero (less then 0.5 volts).
7) Hold Sl in the "step" position and verify the presence of high-going pulses at J4. The
9) Move Sl to the "step" position several times, and verify that the $J 4$ signal pulses high when you do that.

If any of those tests fail, remove power and debug the circuit before continuing.

Final checkout

Now you're ready to connect the unit to a target system.

1) Attach a test cable to the

MICRO-MON unit and connect the clip over the PROM in the target microprocessor system, at the same time ensuring correct pin-1 orientation.
2) If the target microprocessor uses an open-collector or opendrain device in the wait circuit. simply clip the wait cable directly to the wait pin. Another method is to insert a 200 -ohm resistor between the target's wait logic

TABLE 1-OPTION SELECT JUMPERS		
Jumper	Position	Description
1	$\begin{aligned} & 1-2^{*} \\ & 2-3 \end{aligned}$	Wait low Wait high
2	$\begin{aligned} & 1-2^{\star} \\ & 2-3 \end{aligned}$	Enable internal power Enable power from test clip
3	On Off*	Enable Match Enable signal to test clip
4	$\begin{aligned} & 1-2^{*} \\ & 2-3 \end{aligned}$	Enable Match Enable to 8-bit test clip Enable Match Enable to 16 -bit test clip
5	$\begin{aligned} & \mathrm{On}^{*} \\ & \mathrm{Off} \end{aligned}$	Enable power to test clip pin 30 Disable power to test clip pin 30
* $=$ Default		

COMPONENT SIDE OF THE MICRO－MON PC BOARD．

DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS

While watching rental movies, you will notice annoying perioolic color darkening, color shift, unjagged odges. This is caused by the copy protection jamming signals em. bedded in the video tape, such as Macrovision copy protection. Digital Video Stabilizer: RXII completely eliminates all copy protec. tions and jamming signals and brings you crystal clear pictures. - Easy to use and a snap to install

- State-of-the-art in tegrated circuit technol ogy
- 100\% automatic - no need for any troublesome adjustments
Compatible 10 all types of VCRs and TVs
- The best and most excit ing Video Stabilizer in
the market
- Light weight (8 ounces) and Compact ($1 \times 3.5 \times 5$ - Beautiful deluxe gift box - Uses a standard battery which will 2 years. battery
2 years.

WARNING :
SCO
Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate rental movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only.
(Dealers Welcome)

ToOrder: $\$ 59.95$ ea $+\$ 4$ for FAST UPS SHIPPING 1-800-445-9285 or 516-568-9850 Visa, M/C, COO M-F: $9 \cdot 6$ (battery not included) SCO ELECTRONICS INC.
Dept Creli 581 W. Merrick Rd. Valley Stream NY 11580 Unconditional 30 days Money Back Guarantee CIRCLE 193 ON FREE INFORMATION CARD

CABLE TV DESCRAMBLERS
How You Can Save Money on Cable Rental Fees Bullet Proof

1 Unit $5+$

BEST Super Tri-Bi Auto Var. Gain Adjustment $\$ 119.95$. . $\$ 85$ Jerrold Super Tri-Bi ... $\$ 109.95 . \$ 79$ Scientific Atlanta $\$ 109 \$ 79$ Pioneer \$109....... $\$ 79$ Panasonic TZPC145.... $\$ 99.95$.... $\$ 79$ US Cable'I Bea Anyone's Price Adverlised in this Magazine! Prargate Comverter \$95 86 Stargate Corverter....... \$95......... $\$ 69$ Digital Video Stabilizer. \$59.95.... \$29
Wireless Video Sender.. $\$ 59.95 . . . \$ 49.95$
30 Day Money Back Guarantee FREE 20 page Catalog
Visa, M/C, COD or send money order to: U.S. Cable TV Inc. Dept. KREII 4100 N. Powerline Rd., Bldg. F-4 Pompano Beach, FL 33073

For Our Record

1, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on Cable TV systems with proper authorization from local officials or cable company officials in accordance with a applicable federal and state laws. FEDERAL AND VARIOUS STATE LAWS PROVIDE FOR SUBSTANTIAL CRIMINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE.

Date:
Signed: \qquad

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise noted
R1-150,000 ohms
R2-100,000 ohms
R3-200,000-ohm PC-mount potentiometer
R4-1000 ohms
R5, R10-10,000 ohms
R6-10 ohms
R7-2.2 megohms
R8, R9-47,000 ohms
RN1-RN4-470 ohms $\times 9$ resistor network, pin 1 common
RN5-RN12-47,000 ohms $\times 9$ resistor network, pin 1 common

Capacitors

C1-2.2 μ F, 25 volts, tantalum
$\mathrm{C} 2-0.1 \mu \mathrm{~F}, 25$ volts, tantalum
C3-1 $\mu \mathrm{F}, 25$ volts, tantalum
C4-33 pF, ceramic disc, with socket (see text)
C6-C15- $0.1 \mu \mathrm{~F}$, ceramic

Semiconductors

IC1-IC4-74HCT240, octal threestate inverting buffer
IC5-74HCT221, dual monostable multivibrator
IC6-74HCT14, hex Schmitt trigger
IC7-74HCT00, quad Nand gate
IC8-74HCT32, quad or gate
IC9-IC12-74HCT688, eight-bit magnitude comparator IC13-7805 + 5 -volt regulator
Q1-2N2222 NPN transistor
D1-1N914 diode
LED1-LED32-red LED (T1-3/4 package)

Other components

J 1 -a-16 $\times 20.1^{\prime \prime}$ header
$\mathrm{J1}-\mathrm{b}-20 \times 20.1$ header
J2-3.5mm coaxial jack
J3-J4-RCA PC-mount phono jack JU1, JU2, JU4-3-pin 0.1" header
JU3, JU5-2-pin 0.1" header
S1-SPDT toggle, center off, one side momentary (Alcoswitch MTA-106H-PC or equiv.)
SW2-SW33-SPDT slide, middle NC
SW34-SPST slide
Miscellaneous: 6-volt, 300-mA DC adaptor, front panel, enclosure (Hammond P/N A9086265), cables for 28-, 32- and 40-pin ROM's, cable for wait line, assembly hardware.
Note: The following items are available from Jim Cooke, P.O. BOX 834, Pelham, NH 03076 (603) 882-4460: Complete kit, \$189; PC board only, \$29; PC board kit and all components, \$99; enclosure with silkscreened front panel, \$49; cable assembly with 28-pin chip clip, \$49. New Hampshire residents add appropriate sales tax; all orders add 5\% for shipping. MC and Visa accepted.
and the microprocessor, as shown in Fig. 6. If neither method is feasible, you must evaluate the target's circuit design to determine the best way to tap into the wait logic. Remember that MICRO-MON uses the wait line to control the microprocessor, so stepping and match functions will not work without a wait circuit connection.
3) Having made the connection to the wart line, you must now adjust MICRO-MON's wait timing. The objective is to adjust the wart pulse so that the target executes one operation each time the step switch is depressed. Potentiometer R3 adjusts the duration of the wart pulse. If the wait pulse is too short, the microprocessor may not step at all: if the wart pulse is too long, several operations may occur for each step operation. If the target system runs very slowly, you may have to increase the value of C 4 , which is mounted in a socket to facilitate easy substitution in case you have to experiment with different values.

One way of adjusting the wart pulse is to obtain or blast an EPROM containing all "NOP" (No Operation) instructions. The NOP PROM will cause the target microprocessor to cycle through all addresses. After installing the NOP PROM, place Sl in the "stop" position; a random address will appear in the address LED's. and the opcode for the NOP instruction should appear in the data LED's. Pressing Sl once should increment the address by 1,2 , or 4 , depending on the instruction word length of your microprocessor.

If the wart pulse is too long, the address will increment by more than 1,2 , or 4 : if the pulse is too short, the address won't increment at all. The best technique is to start short and increase the wart-pulse duration until it just starts to increment by one instruction word

After adjusting the wart pulse, ensure that the auto-step feature works. Hold down the step switch; the LED's should show the address incrementing about twice per second.

Checkout is now complete and MICRO-MON is ready to use on your workbench or in the field. Happy debugging!

R-E

USING MICROPROCESSORS IN YOUR home projects often turns out to be a complex ordeal．The typical microprocessor project consists of the processor，EPROM，RAM， address decoder circuitry，clock circuitry．input／output ports， and the ever present but essen－ tial＂glue＂components．Things can get a little more complicated if a special－purpose IC like an analog－to－digital converter is thrown in．Then comes the plea－ sure of putting everything on a circuit board－and most of the time the complexity of the circuit necessitates the use of a double－ sided board！

But don＇t despair．There is an easier and more enjoyable way to exercise your hobby．This article will open the door to a more effi－ cient hobbyist approach to de－ signing microprocessor－based projects．Imagine how much de－
sign time could be saved if you had a processor，EPROM，RAM． clock．and input／output ports al－ ready integrated into a standard 40－pin package．

Such devices already exist，of course－they＇re called micro－ controllers．Several different va－ rieties of these microcontrollers are now readily and inexpen－ sively available．All you really need to use them is a micro－ controller programmer，and we＇re going to show you how to build one in just one evening for under $\$ 50$ ．The programmer is good for the 8748 H and 8749 H series of microcontrollers made by Intel．

The 8748／49H

The $8748 / 49 \mathrm{H}$ is commonly re－ ferred to as a single－component 8 －bit microcomputer．The in－ struction sets for the 8748 H and 8749 H are identical．The 8749 H
contains 2 K of EPROM and 128 bytes of RAM，while the 8748 H contains 1 K of EPROM and 64 bytes of RAM．Although that doesn＇t sound like a lot of memo－ ry，you＇ll find the amount of EPROM and RAM to be more than adequate for most controller ap－ plications．And if you do require extra RAM，you can hang it out－ board just as you would with any other processor IC．

Both IC＇s include an interval timer／event counter，two single－ level interrupts，an internal os－ cillator，a true bi－directional bus， two latched quasi－bidirectional I／O ports，two testable input pins，and an 8－bit processor that executes over 96 instructions with most of them consisting of a single byte．If you＇re short on I／O or memory，the $8748 \mathrm{H} / 49 \mathrm{H}$ will accommodate most common pe－ ripheral circuitry available for other microprocessors．A mini－ mum circuit configuration con－ sists of the $8748 \mathrm{H} / 49 \mathrm{H}$ ，a crystal， two 27－pF disk capacitors，a 5－ volt DC power source，and a $1-\mu \mathrm{F}$ reset capacitor．

Software

There are many cross as－ semblers for the $8748 \mathrm{H} / 49 \mathrm{H}$ available in the public domain， and many more advertised by reputable electronics dis－ tributors．Just choose one that fits your needs and budget．One cross－assembler software pack－ age that can be used with PC－ compatible computers is con－ tained in a ZIP file（TASM．ZIP） that＇s included as part of a larger ZIP file containing all software relevant to this article．The larger ZIP file（874XPGR．ZIP）is avail－ able on the RE－BBS（516） 293－2283，1200／2400，8N1．

The $8748 \mathrm{H} / 49 \mathrm{H}$ lends itself well to applications that require I／O port activity and serial com－ munications（RS－232）with a ter－ minal or supervisory program． This project was designed to take advantage of both．Most of the data storage and screen informa－ tion are maintained and pre－ sented to the user by the terminal program．PROG．EXE，which runs on a PC－compatible com－ puter．The terminal program is DOS based，so you may have to modify the source code （PROG．BAS）to run on a different computer．The software listing

FIG. 1—PROGRAMMER SCHEMATIC. The MAX233 RS-232 driver/receiver (IC1) converts the signals from your serial port to TTL levels for the 8749 H and vice versa.
for the terminal program is unfortunately too large to print here, but it is contained in the main ZIP file (874XPGR. ZIP).

Any data or commands are sent serially at 2400 bits per second from the terminal program via serial port to the programmer. The programmer's processor acts on the received data and returns any necessary data to the terminal program. This eliminates the housekeeping functions that would normally be performed by the programmer's processor, and thus simplifies both the hardware and the software of the programmer module.

Circuitry

Looking at the schematic in Fig. 1, lCl is a MAX233 RS-232 driver/receiver. Its purpose is to convert the signals from your serial port to TTL levels for the 8749 H and vice versa. The input serial data stream is fed into the to input of the 8749 H programmer while the output data stream is fed from I/O Port 1.0. The combination of the driver/receiver IC. the built-in hardware of the 8749 H , and firmware in EPROM
allows the terminal program to communicate with the $8748 \mathrm{H} / 49 \mathrm{H}$ programmer.

Microcomputer IC2 (an 8749H) controls the application of the proper programming voltage levels, pulses, address information, and data to IC3 (the target device), which is installed in a ZIF (zero insertion force) socket when programming. The code for IC2 (874XCODE.HEX) is also contained in the ZIP file 874XPGR.ZIP. (There is also a binary version of the code, $874 \mathrm{XCODE.BIN}$, which is also contained in the ZIP file.) The bidirectional ports contained in IC2 latch output data and read input data that is latched onto an external port by another device. Traditionally that would be handled by both a 74 LS 373 octal latch used as an output port and a companion 74 LS 244 used as an input port. Our programmer contains no external latches or address decode circuitry in either the data bus or control ports.

Data and address information are multiplexed on the bus pins ado-adn. The bus pins behave in
a similar fashion to the bidirectional port pins but tend to be more TTL-like in nature. If you get a data sheet, study the differences in internal hardware construction as it pertains to the bus and quasi-bidirectional I/O ports. In the case of the programmer hardware, the target, IC3, and main processor, IC2, alternately latch output data on their respective busses to be read by the opposing processor's bus. Address pins a8-A10 are actually IC2's I/O port pins e.o-P.2, and are used as latched output pins. I/O port P is used to control the transistor pairs that supply the correct programming voltages to the target device. Since all of the bidirectional I/O pins can drive one TTL load, port Pl is also used to set up TTL logic levels on IC2's port pins Pi.4-Pi.6 that connect to the target device directly.

Power for IC1 and IC2 is supplied via voltage regulator IC4 and associated circuitry. Crystal XTALI along with the two 27-pF capacitors supply the feedback path for the on-chip oscillator. Since precise clock periods are required to generate timing for

Abstract

This Cnistmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharper. his focus and illuminate the whole spectrum of electrorics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get great plans and printed circuit patterns for great electronic projects. In just the last year, Radio-Electronics has presented voice scramblers, video switchers, frequency standards, wireless audio links, radiation monitors, function generators, and much more.

In coming issues, Radio-Electronics will present practical, educational, and money-saving projects like: a helium-neon laser ... a lighting controller ... a video timebase corrector ... a video noise processor ... a light-beam communicator ... an antenna amplifier ... and many others!

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and new products ... equipment test reports ... indepth coverage on computers, video, audio, shortwave radio ... and lots more exciting features and articles.

SAVE \$19.43* ... OR EVEN 538.86^{*}.... For each gift of Radio-Electronics you give this Christmas, you save a full $\$ 19.43^{*}$ off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate -you save an additional $\$ 19.43^{\text {* }}$!

No need to send money ... if you prefer, we'll hold the bill till January, 1992. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!

FIG. 2-FIRST INSTALL THE POWER SUPPLY DIODES D1-D4, filter capacitor C1, switch S1, and connect the 18-VAC transformer. With no other parts installed, you should have a full-wave bridge circuit with a +25 -volt DC output across C1.
the serial data stream and programming pulses, a crystal-controlled oscillator is essential.

The $1-\mu \mathrm{F}$ tantalum capacitor, C5, resets the microcomputer. Note the absence of the reset switch, and don't be tempted to add one. If the power is toggled or the processor is reset while a target device is socketed, permanent damage will result to the target due to transient voltages on the transistor pairs generated by a main processor reset. Therefore. NEVER apply or terminate power while a target is socketed. You may add a reset switch across the $1-\mu \mathrm{F}$ capacitor as shown in the example circuits we'll look at later.

The device to be programmed, IC3, can be either a 8748 H or 8749 H . You select the type when you run the terminal program. The target device needs +5 -, +18 -, and +21 -volt DC power sources to effect the programming/verify process. The voltages are derived from voltage regulators IC5-IC7; IC5 and IC6 are standard configurations of the low-power " $L Z$ " version of the LM317.

Transistor pairs Q3-Q4, Q5Q6. and Q7-Q8 provide the highvoltage switching functions necessary for the programming and verification of the target device. Voltage regulator IC7, a 7805 T , supplies +5 -volts DC to the target during programming and verification. Light-emitting diode LEDl is active when power is applied to the target device. Tran-
sistor pair $\mathrm{Q} 1-\mathrm{Q} 2$ is used to switch all operating power to the target device (IC3).
The $8748 \mathrm{H} / 49 \mathrm{H}$ needs a clock signal to move data internally. Crystal XTAL2 along with its 27pF capacitors are used to supply a clock signal for the target device. Any crystal between 3 and 4 MHz will suffice. The target clock period is not critical to the programming process.

The sequence used to program IC3 is similar to programming an ordinary EPROM: the target device is powered up in program mode. Address information is passed to the target by IC2. Then, data information is latched out of IC2 to the target. A pulse is applied to the target's prog pin and the verification process follows. If verification is good, then the process is repeated for the next byte, and so on.

To sum it up, ICl converts RS-232 voltage levels to TTL voltage levels and vice versa. Controller IC2 provides communication with the terminal program via a 2400 bits-per-second serial link, provides address and data information to the target, provides precisely timed pulses to the target, and provides voltage-switching information to the transistor pairs that interface with the target. Target IC3 is programmed with the data you specify using the terminal program in conjunction with IC2. All of this is done with a single-component microcomputer on a single sided board!

PARTS LIST

All resistors are $1 / 4$-watt.
R1-3830 ohms, 1%
R2, R4-237 ohms, 1\%
R3-3240 ohms, 1\%
R5-R10, R12, R13-1000 ohms, 5\%
R11, R14-180 ohms, 5\%

Capacitors

C1- $1000 \mu \mathrm{~F}, 35 \mathrm{~V}$, electrolytic
C2, C8-C12-0.1 $\mu \mathrm{F}, 50 \mathrm{~V}$, Mylar
C3, C4, C6, C7-27 pF, disk
$\mathrm{C} 5-1 \mu \mathrm{~F}, 35 \mathrm{~V}$, tantalum
Semiconductors
IC1-MAX233 RS-232 driver/ receiver
IC2-8749H microcontroller (programmed)
IC3-8748H or 8749 H microcontroller
IC4, IC7-7805T 5-volt regulator
IC5, IC6-LM317LZ low-power adjustable regulator
D1-D4-1N4001 diode
D5, D6-1N4148 diode
LED1, LED2-light-emitting diodes, choose color to suit taste
Q1-Q8-2N2222A NPN transistor

Other components

S1-SPST toggle switch
XTAL1- $10-\mathrm{MHz}$ crystal
XTAL2-3.57-MHz crystal
Miscellaneous: 18VAC 1.35A transformer, heatsink for IC4, 40-pin ZIF socket (for target IC3), 40-pin IC socket (for IC2), 20-pin IC socket (for IC1), 25 -pin right-angle female DB-25 connector (optional), serial cable, PC board, wire, solder, etc.
Note: The following items are available from F. Eady, PO Box 541222, Merritt Island, FL 32954: - A kit of parts including a preprogrammed microcontroller (not including the transtormer, ZIF socket, serial cable, or 25pin connector)- $\$ 49.95+\$ 5.00$ S\&H.

- PC board only- $\$ 15.00+\$ 5.00$ S\&H.
- Software on floppy disk$\$ 5.00$ postpaid.
Check or money orders only.
For technical assistance call (407) 454-9905.

Construction

The first thing you must do is etch and drill a PC board from the pattern we've provided--or purchase a ready-to-use PC board from the source mentioned in the parts list. As shown in Fig. 2, start assembly by installing power supply diodes D1-D4 and filter capacitor C1. Mount the switch Sl and connect the 18 VAC transformer. At this point,
with no other components mounted yet．you should have a full－wave bridge circuit that out－ puts +25 －volts DC measured across C 1 ．

Once you are satisfied with the 25 －volts DC across C1，install voltage regulator IC4 and bypass capacitor C11．Be sure to install a heatsink on IC4．Apply power and measure the output of IC4； you should have +5 volts DC at the output（pin 3）．If so，install the rest of the power supply com－ ponents：R1－R4．C2，C12，1C5， IC6．and IC7．To check the voltage levels from those regulators you must also install transistor pair Q1－G2，since this pair supplies power to the regulators．Install LED1 and LED2，along with cur－ rent－limiting resistors R11 and R14．

Once all of the power compo－ nents are installed（with no IC＇s yet installed），apply power and both LED＇s should light．You should be able to read the volt－ ages on the outputs of the voltage regulators（IC5－IC7）．You can now jumper R5（that goes to the base of Q 1$)$ to +5 volts：that should turn off power to the tar－ get device and extinguish LED1． That simulates a high TTL level that would normally come from the main processor， IC 2 ，and ver－ ifies that the target power－shut off circuitry is working properly．

Finish the assembly by install－ ing the remaining transistor pairs．You can test the transistor pairs and their switching by jumping the base input resistors to +5 volts and noting the change in output voltage at the pair＇s open－emitter output．The $\mathrm{V}_{\text {DD }}$ pair should toggle between +21 and +5 volts．The Program Pulse pair should toggle between +18 volts and floating．The EA pair should toggle between +18 and +5 volts．If not．make sure that you have installed blocking diodes D5 and D6 and also re－ check the rest of your work．

The prototype used a modified right－angle DB－25 connector for J1，mounted directly to the board using the appropriate nuts and bolts．You do not have to use a connector；you can solder your cable directly to the PC pads if you wish．If you do decide to add the DB－ 25 connector，cut off all of the pins except 2,3 ，and 7 ．Note that no holes are provided for the

LISTING 1

ADORESS				
1				
1 CODE	LABEL			
1	1			
00002307	A	MOV A	A，\＃000001118	；WRITE LETTER X 10 ALL 4 DIGITS
0002142 F		CALL	WRITEX	；WRITE TO DIGIT 3
00042306		MOV A	A，\＃00000110B	
0006142 F		CALL	WRITEX	；WRITE 10 DICIT 2
00082305		MOV A	A，\＃00000101B	
000A 142 F		CALL	WRITEX	；WRITE TO DIGIT 1
000 C 2304		MOV A	A，$\# 00000100 \mathrm{~B}$	
000E 142 F		CALL	WRITEX	；WRITE TO DIGIT 0
00109800	B	ANL	P2，\＃00000000B	；CLEAR THE CURSOR
00122300		MOV	A，\＃0	
001490		MOVX	ero，A	
00152307	c	MOV A	A，$\# 000000111 \mathrm{~B}$	；WRITE LEITER 8 TO DIGIT 3
0017 3A		OUTL P	P2，A	
00182338		MOV A	A，\＃＇8＇	
001A 90		MOVX	（ERO，A	
00182306		MOV	A，\＃000000110B	；WRITE LETTER 7 TO DIGIT 2
001 D 3A		OUTL P	P2，A	
001E 2337		MOV A	A，\＃＇71	
002090		MOVX	ERO，A	
00212305		MOV	A，\＃000000101B	；WRITE LETTER 4 TO DIGIT 1
0023 3A		OUTL P	P2，A	
00242334		MOV A	A，\＃1 4^{1}	
002690		MOVX	ero，A	
00272304		MOV A	A，\＃000000100B	；WRITE LETTER 8 TO DIGIT O
0029 3A		OUTL P	P2，A	
002A 2338		MOV A	A，\＃＇8＇	
002C 90		MOVX	ero，A	
00200420	D	JMP	\＄	；LOOP HERE FOREVER
002F 3A	WRITEX	OUTL P	P2，A	；WRITE LETTER X SUBROUTINE
00302358		MOV A	A，\＃＇χ^{\prime}	
003290		MOVX	ERO，A	
003383		RET		

LISTING 2

ADORESS				
,				
\| CODE	Label			
1 \|	I			
00002301	A	mov	A, \#000000018	;WRITE A BINARY O0000001 TO THE DATA BUS
000202		OUTL	BUS, A	; TURN ON TRANSISTOR AND LED
000314 OC		CALL	killtime	;KILL SOME TIME
00052300	B	mov	A, 1000000008	;WRIIE A BINARY 00000000 TO DATA BUS
000702		OUTL	BUS, A	;TURN OFF TRANSISIOR ANO LED
$0008140 C$		CALL	KHLLTIME	;KILL SOME TIME
000A 0400	c	JMP	A	;CO DO HI ALL ACAIN
000C 88 FF	killitime	MOV	RO, \#OFFH	; LOAD REGISTER RO WITH FF HEX
000 E B9 FF	INNERLOOP	MOV	R1, \#0FFH	; LOAD RECISTER R1 WITH FF HEX
0010 E9 10		D.JN2	R1, ${ }^{\text {d }}$;DECREMENT R1 To 00
0012 E8 OE		DJNZ	RO, INNERLOOP	;OECREment ro - if ro not equal o then do
001483		'RET		; DONE KILLINC TIME

FIG. 3-THE COMPLETED UNIT. Double check all voltages on the pads of IC1 and IC2 before installing them in their sockets. When you apply power, LED2 should illuminate.

DB-25 mounting hardware because of the many different styles of connectors. Install your DB-25 connector and drill mounting holes accordingly.

It's a good idea to double check all voltages on the pads of ICl and IC2 before installing them. When you are satisfied that all is well install the IC's. Apply power and LED2, the main power $L E D$. should illuminate. LEDI should not illuminate indicating that IC2 has initialized transistor pair Q1-Q2 properly and no voltage is present at the target ZIF socket (IC3). Figure 3 shows the completed unit.

Using the programmer

Connect the serial port from your computer to the programmer's serial connections and execute the terminal program at this time. If all is well, "READY FOR COMMAND" should appear on your screen. This indicates that the terminal program has established communications with the programmer. If "UNABLE TO COMMUNICATE WITH PROGRAMMER" appears, some thing is not right with the programmer or your serial port connections.

Power up the programmer and start the terminal program (PROG.EXE)-if you haven't done so already. You should get "READY FOR COMMAND" on the screen before beginning. You may socket the target device in the IC3 ZIF socket any time after you power up and any time LEDI is not on.

Note the list of commands. You may execute a command by typing the letter contained in parentheses preceding the command. The terminal program has been written so that its use will be obvious to the user. For those of you not familiar with programming any sort of programmable device, the basic steps are:

1. Make sure the target device is blank.
2. Load the binary image of the file you want to program into the terminal program.
3. Program the device.

Some sample programs and circuits have been included that use the 8748 H in a minimum mode configuration. The intent here is to allow you to enter the machine code into a file using a

FIG．4－INTELLIGENT DRIVER for a 4－digit display module．The circuit will first put an＂X＂ in all four digits and then display＂ 8748 ．＂The accompanying software is shown in Listing 1．The TSM1416 4－digit display module is manufactured by Three－Five Systems，Inc．

FOIL PATTERN for the microcontroller programmer，shown actual size．
binary editor and then program that file into a target 8748 H ．This eliminates the initial need for a cross assembler and gives you the opportunity to experiment with minimum cost and effort． The circuits presented illustrate the advantages of using an inte－ grated microcomputer like the 8748 H －and they＇re simple enough to be built on an experi－ menter＇s breadboard．

Figure 4 shows an intelligent driver for a 4－digit display mod－ ule，and Listing 1 shows the ac－ companying software．The cir－ cuit will first put an＂ X ＂in all four digits and then display＂8748．＂ While it＇s nothing fancy，it does show you how to make the dis－ play work．The TSM1416 4－digit display module is manufactured by Three－Five Systems，Inc．
Our second example circuit， shown in Fig．5，is our＂expensive LED blinker circuit．＂We say＂ex－ pensive＂because you certainly

FIG．5－EXPENSIVE LED BLINKER cir－ cuit．While it is somewhat overkill，it is very useful as a teaching tool．The soft－ ware for this circuit is shown in Listing 2.
don＇t need a microcontroller to turn an LED on and off－the cir－ cuit is somewhat of an overkill． However，the circuit＇s simplicity becomes extremely beneficial when it＇s being used as a teach－ ing tool．That way you can con－ centrate on the microcontroller＇s operation．The software for the Fig． 5 example is shown in List－ ing 2.

For the two example circuits we ve provided，you can copy the software routines directly from the listings or download them from the RE－BBS as part of the main ZIP file（874XPGR．ZIP）．R－E

Electronic dog tag contest, case \& enclosure resources, SMPTE time code standards, photovoltaic panel bargains, and a solar energy breakthrough!
 DON LANCASTER

We'll start off with our usual reminder that this is your column and you can get tech help and off-the-wall networking per the "Need Help" box below. Your best calling times are often weekdays $8-5$, mountain standard time

We have some really heavy stuff for this month, so let's have at it..

Solar energy breakthrough?

Well, just maybe. It is far too soon to tell. But I guess we are overdue for a general update on solar energy.

On a bright Arizona day, you can figure around 1000 watts per square meter of incoming solar energy. This is a fairly diffuse and a rather weak energy source. A source that is made much worse by being there only some of the time. And made even more so by today's appallingly poor electrical conversion efficiencies.

Silicon solar cells are inherently inefficient when fed sunlight, which makes a diffuse energy source even harder to use. A semiconductor solar cell operates by receiving a precise packet of energy and then using that packet to release one electron to an external electrical circuit.

The energy of incident light is proportional to its frequency $E=h v$ and all of that. At one single near-infrared frequency, the light energy packets are exactly the correct size needed by a silicon solar cell to get efficiently converted into electrical energy. All lower frequencies become largely useless waste heat

What about higher frequencies? Only the magic energy packet size counts, so the higher frequencies will both generate useful power and extra waste heat. The higher the frequency, the higher your waste. The "spare change" above your critical energy level will get lost and appears to be unrecoverable. Sort of like a dollar tollbooth that requires you to dump all the change in your pocket.

When you consider the entire solar spectrum, the best possible overall
efficiency you can get from a silicon solar cell is around 25 percent. This appears to be a fundamental and un= avoidable physical limit.

Out in the real world, silicon solar panels are much less than ideal, and you are very lucky to get an overall long-term system efficiency above ten percent. And often less

Which is dangerously close to the seven percent "breakeven" level, below which any solar panel will never pay for itself, owing to the materials and labor that go into the system, and the time value of the money used to finance the construction.

At seven percent efficiency, a onemeter square solar panel will generate around half a kilowatt hour per day, or around $\$ 5$ of electricity per year.

Yes, there are tricks you can pull to raise your efficiency. Such as using a pair of different semiconductors having different work functions. Or using concentrators. Or heating water with the waste heat. Or trying to reshuffle or "downconvert" your solar spectrum to the magic frequency. But these seem mostly laboratory pipe dreams that, in my opinion, are unlikely to see the light of day.

In fact, the existing solar electric power plants are actually being torn down, owing to low efficiencies and really bad economics. Many hackers should be interested in the great bargains in the used (and somewhat degraded) solar panels now being offered wholesale by Carrizo Solar and retail by Surplus Traders.

NEED HELP?

Phone or write your Hardware
Hacker questions directly to: Don Lancaster Synergetics Box 809 Thatcher, AZ 85552 (602) 428-4073

Instead, "what if" our sun was a radio source? You would simply get an antenna and a rectifier, and high direct solar-to-electric conversion efficiencies can now be yours. This is called a crystal set, and all of the technology does appear to be fairly well proven. Efficiencies near 100 percent would be theoretically possible. With any care at all, the real world long-term efficiencies would not have to be that much worse. Your same square-meter panel could approach $\$ 80$ per year in electricity, a much more attractive value.

The only little problem is that, until now, nobody was quite sure what an optical antenna or an optical rectifier was. Enter an individual researcher by the name of Alvin Marks who uses crossed pairs of a special Lumeloid film that uses the antenna/rectifier method for a direct solar conversion. Figures now including an 80-percent efficiency and a penny per kilowatt hour are being bandied about.

This does look legitimate. No obvious physical laws are being broken and the Electric Power Research Institute has seen fit to throw some cash at the idea. And we are certainly getting much better at working with stuff the size of optical wavelengths.

All of this is brand new and was rushed to meet this month's Hardware Hacker deadline. All the info I have on it so far is the brief note in Business Week, August 12, page 49.

For more on direct solar conversion, stay tuned or check into my PSRT bulletin board on GEnie. Other obvious news sources include Science News, Science, and the technology section of the Wall Street Journal.

For ongoing technical info, do try $E P R I$ or else the Dialog Information Service. The search keywords could include solar. Marks, Lumeloid, power, EPRI, and energy.

Finally, for the ongoing grass roots shirtsleeves solar energy info, be

（A）LATERAL TIME CODE．．．

This older and nearly obsolete code neejs an auxiliary audio channel and outputs one 1200 baud code string per video frame．The tape MUST be in motion for reading．The code is synchronized to begin on the fifth horizontal scan line of the first field in the frame．The low state equals 0 IRE units and the high state equals 80 IRE units．
The data stream is 80 bits long and follows the format of figure 2．It uses Manchester，or biphase encoding that is self－clocking and can be read in either direction．Various bits in the data are assembled into BCD words identlfying the frame，the seconds，the minutes，and the hours． Other bits are used for synchronization，time adjustment，simple parity and special use flags．
Reference：SMPTE 12M－1986
（B）VERTICAL INTERVAL TIME CODE．．．
This newer and widely used code is embedded each field on single horizontal lines during retrace．The code gets repeated two，and sometimes four times，beginning on line 10 of each field＇s vertical retrace interval for improved noise immunity．The code begins 10.5 microseconds into the line．
The tape can be stationary or moving in either direction．There are 90 bits to the code，sent at a stationary rate of approximately 1.8 MHz ． The format appears in figure 3．It also uses Manchester，or biphase encoding that is self－clocking and can be read in either direction． Various bits in the data are assembled into BCD words for the field，the seconds，the minutes，and the hours．Other bits are used for sync，time adjustment，full CRC error checking，and special flags．
Reference：SMPTE RP－108
FIG．1－THE SOCIETY FOR MOTION PICTURE ENGINEERS，or SMPTE offers these two standard time codes for video production or editing．
sure to check out that really great Home Power magazine and the new Photovoltaic Network News

Video time codes

We are shortly going to see lots of new software and hardware that will make any totally professional video production on a mainstream home computer system roughly as compli－ cated as writing a business memo with a word processor．And that＇s real editing on a precise field－by－field basis．With the full genlock，overlay， station sync，anti－aliasing，and color keying．Plus all of the＂gee whiz＇ bells and whistles

Real editing demands that you can locate and identify each and every individual field in the entire video． That normally gets done by using a video time code

Figure 1 summarizes the two most popular time－code systems in use to－ day．Both of these are standards pub－ lished by the Society for Motion Picture and Television Engineers．A useful Time Code Handbook is now available through Cipher Digital．It in－ cludes the SMPTE code standards along with the related MIDI electronic music timing code

My copy was free，but they may panic when they see the humongous stack of reader－service responses that they are certain to get from this column．

The human persistence of vision is somewhere around 40 to 50 Hertz ， so tricks have to be played to mini－ mize the flicker of many motion dis－ plays．For instance，with any 35 － millimeter movie，the light is turned off and a frame is suddenly moved into position by using an intermittent action known as a Geneva Stop Mechanism．The light is turned back on by a beam interrupter．The light is turned back off．The light gets turned on again，projecting the exact same image a second time．Finally，the light gets turned off and your next frame is moved into position．

We say the sound movie uses a frame rate of 24 frames per second． The field rate is 48 fields per second． In this case，the two fields per frame are identical．

With standard television，you have a frame rate around 30 frames per second．Each frame gets broken into two fields，one containing the odd scan lines，and another containing the even scan lines．This is known as

No costly school．No commuting to class． The Original Home－Study course prepares you for the＂FCC Commercial Radio－ telephone License．＂This valuable license is your professional＂ticket＂to thousands of exciting jobs in Communications，Radio－ TV．Microwave．Maritime，Radar，Avionics and more．．．even start your own business！ You don＇t need a college degree to qualify， but you do need an FCC License．
No Need to Quit Your Job or Go To School This proven course is easy，fast and low cost！GUARANTEED PASS－You get your FCC License or money refunded．Send for FREE facts now．MAIL COUPON TODAY！

COMmAND PRODUCTIONS

FCC LICENSE TRAINING，Dept． 90
P．O．Box 2824，San Francisco，CA 94126 Please rush FREE details immediately！ NAME
ADDRESS
CITY
STATE
ZIP

interlace and gets used to reduce the display flicker. The field rate is near 60 fields per second

Color TV introduces a further complication in that successive frames must be paired as Frame A and Frame B. This is done to reduce color subcarrier visual artifacts. Thus, only the multiples of two frames or four fields should ever be cut or edited. A glitch results if B does not always follow A, and vice versa

The original or Lateral Time Code standard was first intended for movie film, and later adapted to videotape. This largely obsolete code is summarized in Fig. 1 and is detailed in Fig 2. The lateral time code needs a separate audio channel. An entire frame is used to transmit 80 bits of digital data at a normal rate of 1200 bits per second. The tape must be moving, either forward or backward before the time code can be read. There is also no provision for error trapping.

A Manchester or biphase coding is used. This just means that each bit changes at its beginning. A "one" bit also changes at its middle; a "zero" bit does not. A code of this- type is inherently self-clocking and can be

NEW FROM
 DON LANCASTER

HARDWARE HACKER STUFF
Hardware Hacker Reprints II or III 24.50 Midnight Engineering Reprints 16.50

Incredible Secret Money Machine
CMOS Cookbook
TTL Cookbook
16.50
24.50

Active Filter Cookbook Micro Cookbook vol I or II Lancaster Classics Library Enhancing your Apple I or II AppleWriter Cookbook 19.50 19.50 109.50 Absolute Reset lle \& IIc 17.50 Absolute Reset Ile \& IIc Enhance I or II Companion Disk AppleWriter CB or Assy CB Disk 19.50

Ask The Guru Reprints I, II or III 24.50 LaserWriter Secrets (Ile/Mac/PC) 29.50 PostScript Show \& Tell 29.50
39.50 Intro to PostScript VHS Video 39.50 PostScript Beginner Stuff 39.50 PostScript Cookbook (Adobe) $\quad 16.50$ PostScript Ref. Manual II (Adobe) 28.50 PostScript Program Design (Adobe) 22.50 Type I Font Format (Adobe) 15.50 LaserWriter Reference (Apple) 19.50 Real World Postscript (Roth) 22.50 PostScript Visual Approach (Smith) 22.50 Thinking in PostScript (Reid) 22.50 The Whole Works (all PostScript) 299.50

FREE VOICE HELPLINE
VISA/MC
SYNERGETICS Box 809-RE
Thatcher, AZ 85552 (602) 428-4073

LONGITUDINA

SEVENTH BINARY GROUP

FIG 2-THE SMPTE lateral time code needs a separate audio channel and requires a full frame to output at its 1200 baud rate. The tape must be in motion to read the code.
read in either direction. The first data bit is supposed to start off on the fifth TV horizontal line

Those individual bits are largely grouped by fours into Binary Coded Decimal words. These become the units and tens of the frames, sec onds, minutes, and hours. There are also some special bits used for sync,

FIG. 3-THE SMPTE vertical interval time code is sent each field on a blank horizontal line at a 180 Kilohertz baud rate. The tape can be stationary or can move in either direction.
user definition, and specific flags The code is slow enough to be read with machine language code by just about any computer.

FIG．4－ELECTRONIC DOG TAGS using the cheap and durable Maxim DS1990 series of touch memory chips can get stuck on virtually anything．They do offer electronic reada－ ble serial numbers and several thousand of bits of read－write non－volatile memory．These are the shape of a coin cell and last for ten years．

Their newer，or Vertical Interval Time Code is related but is far more sophisticated．It is summarized in Fig． 1 and detailed in Fig．3．The entire 90－ bit time code is transmitted within a single horizontal line．The chosen line should fit somewhere between blanked retrace horizontal lines 10 and 20.

The code must be transmitted twice per field on non－adjacent hori－ zontal lines，and often is transmitted four times for extra noise immunity．

A similar Manchester or bi－phase encoding gets used．This one has a much higher bit rate，typically around 1.8 MHz during a pause．The time code burst begins 10.5 seconds into the selected horizontal line．

The VITC can get read while the tape is stationary or moving in either direction at any reasonable speed．

Error trapping and other special bits are also included in the code．

Unfortunately，the bits do fly by a tad too fast to catch using machine language code on most mainstream microcomputers．So a special fast decoder is needed．Faster yet if you want to search and anticipate during a fast forward or rewind mode．But the logic is simple enough for most PLA or EPLD devices．A dual port RANI or an intelligent peripheral driv－ er could make a very useful computer interface．

I do not yet know of a custom time code single chip，but it is reasonable to expect a cheap one shortly．And several simpler but nonstandard field codes are being introduced in new video products，especially by NEC． Let me know if there is anything you＇d like to see on vide time codes．

CASE AND ENCLOSURE RESOURCES

American Science \＆Surplus

601 Linden Place
Evanston，IL 60202
（708）475－8440
CIRCLE 301 ON FREE INFORMATION CARD
Bud Industries，Inc
4605 East 355th Street
Willoughby，OH 44094
（216）946－3200
CIRCLE 302 ON FREE INFORMATION CARD

Carlon

25701 Science Park Drive
Cleveland，OH 44122
（800）321－1970
CIRCLE 303 ON FREE INFORMATION CARD

EAI

37 Sherwood Terrace，Ste． 124
Lake Bluff，IL 60044
（708）295－6664
CIRCLE 304 ON FREE INFORMATION CARD

Hoffman Engineering

900 Ehlen Drive
Anoka，MN 55303
（612）422－2177
CIRCLE 305 ON FREE INFORMATION CARD

Jensen Tools

7815 South 46th Street
Phoenix，AZ 85044
（602）968－6231
CIRCLE 306 ON FREE INFORMATION CARD

Lansing Instrument

PO Box 730
Ithaca，NY 14851
（800）847－3535
CIRCLE 307 ON FREE INFORMATION CARD

Pelican Products

2255 Jefferson Street
Torrance，CA 90501
（213）328－9910
CIRCLE 308 ON FREE INFORMATION CARD
Rose Enclosure Systems，Inc
7330 Executive Way
Frederick，MD 21701
（301）696－9800
CIRCLE 309 ON FREE INFORMATION CARD
Zerc Corporation
777 Front Street
Burbank，CA 91503
（818）846－4191
CIRELE 310 ON FREE INFORMATION CARD

HUGE EXPANDING MARKET！


```
|aloe sold in |{y| dome!
It is athet lat the base maponitu al bameromet
```



```
Get In Now - Sosme camsorters will be liker V(R2
Ge.ates in , lonesed every hermes
```



```
(454 latn il) minute= womk.
```

Free information packace call or write:
Toll-Free 1-800-537-0589
Viejo Publications, Inc.
5329 Fountain Ave., Dept. REC
Los Angeles, CA 90029
CIRCLE 182 ON FREE INFORMATION CARD

Our New and Highly Effective Advanced－Place－ ment Program for experienced Electronic Tech－ nicians grants credit for previous Schooling and Professional Experience，and can greatly re－ duce the time required to complete Program and reach graduation．No residence schooling re－ quired for qualified Electronic Technicians． Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B．S．E．E．Degree．Up－ grade your status and pay to the Engineering Level．Advance Rapidly！Many finish in 12 months or less．Students and graduates in all 50 States and throughout the World．Established Over 40 Years！Write for free Descriptive Lit－ erature．

OF ELECTRONICS ENGINEERING
©［x ${ }^{2251}$ CYpREsS DRIVE
JACKSON，MISSISSIPPI 39212

Fancy case resources

What can you do when you need an outdoor-rated and waterproof case for all your electronic projects? For this month's sidebar, I've tried to round up some of the more obvious sources for premium enclosures.

JerryCo, who've recently renamed themselves as American Science and Surplus sometimes have great cases at unbeatable prices. Their \#10827 and \#21085 both cost around \$4

The most obvious source for the "suitcase" style packaging is Jensen Tools, who do stock everything from leather through plastic to aluminum to stainless steel. And the ultimate in military quality primo cases come from Zero Manufacturing. At the ultimate in military primo prices.

But the fancy electronic case I am the most impressed with is not an electronic case at all. It's the Guard Box that is offered by Pelican Manufacturing. A reinforced structural resin case measuring roughly 3×6 $\times 8$ inches, it comes in four bright colors, and costs around $\$ 7$ in your smaller production quantities:

The box is airtight and watertight to thirty feet of depth. A handle, a hinged O-ring sealed cover, and positive closure snaps are included

Electronic dog tags

We've seen a number of times in the past how Dallas Semiconductor has come up with really great and super hackable integrated circuits. This time they have totally outdone themselves.

They call their new product line Touch Memory, or Self-Stick Chips. A typical unit is shown in Fig. 4. What you have here is a low cost and durable stick-on data acquisition and storage system the size and shape of a coin-cell battery.

Inside is a 10 -year lithium cell and some unique electronics. Depending on the version, the fancy electronics gives you either a plain old 48 -bit serial number or else thousands of bits of read-write memory.

Obvious advantages over a printed info can be stored, (B) you can update it at any time, (C) no expensive laser reader systems are needed. and (D) the stainless case is far more durable than a paper label.

What is really unique is that there is only a single contact plus the case

American Voice I/O Society 4010 Moorpark Ave, Ste 105M
San Jose, CA 95117
(408) 248-1353

CIRCLE 311 ON FREE INFORMATION CARD
Business News Publishing
PO Box 2600
Troy, MI 48007
(800) 837-1037

CIRCLE 312 ON FREE INFORMATION CARD

Carrizo Solar

PO Box 10239
Albuquerque, NM 87184
(505) 764-0345

CIRCLE 313 ON FREE INFORMATION CARD

Cipher Digital

PO Box 170
Frederick, MD 21701
(800) 331-9066

CIRCLE 314 ON FREE INFORMATION CARD

Dallas Semiconductor

4401 South Beltwood Parkway
Dallas, TX 75244
(214) 450-0400

CIRCLE 315 ON FREE INFORMATION CARD

Electric Power Research Inst

3412 Hillview Avenue
Palo Alto, CA 94304
(415) 855-2000

CIRCLE 316 ON FREE INFORMATION CARD

GEnie

401 North Washington Street
Rockville, MD 20850
(800) 638-9636

CIRCLE 317 ON FREE INFORMATION CARD

Home Power

PO Box 130
Hornbrook, CA 96044
(916) 475-3179

CIRCLE 318 ON FREE INFORMATION CARD

Markel

PO Box 752
Norristown, PA 19404
(215) 272-8960

CIRCLE 319 ON FREE INFORMATION CARD
ground. Which is all you need for reading and writing. Figure 5 shows you how one lead can be used to both read and write. Your host computer or whatever will first input your serial activation data string. Your touch memory will then respond, returning a serial number and/or your data.
The single contact is exceptionally easy to access. There's none of the alignment or fragility problems that you might have with more traditional connectors
Several different styles are newly available. The cheapest outputs only

Personal Engineering

Box 430
Rye, NH 03870
(603) 427-1377

CIRCLE 320 ON FREE INFORMATION CARD
Philips Semiconductor
2001 West Blue Heron Blvd
Riviera Beach, FL 33404
(407) $881-3200$

CIRCLE 321 ON FREE INFORMATION CARD
Photovoltaic Network News
Rt. 2 Box 274
Santa Fe, NM 87505
(505) 473-1067

CIRCLE 322 ON FREE INFORMATION CARD
SGS-Thomson
1000 East Bell Road
Phoenix, AZ 85022
(602) 867-6100

CIRCLE 323 ON FREE INFORMATION CARD

Siemens

19000 Homestead Road
Cupertino, CA 95014
(408) 725-3586

CIRCLE 324 ON FREE INFORMATION CARD
Soc Motion Picture/TV Eng
595 West Hartsdale Avenue
White Plains, NY 10607
(914) 761-1100

CIRCLE 325 ON FREE INFORMATION CARD
Surplus Traders
PO Box 276
Alburg, VT 05440
(514) 739-9328

CIRCLE 326 ON FREE INFORMATION CARD
Synergetics
Box 809-RE
Thatcher, AZ 85552
(602) 428-4073

CIRCLE 327 ON FREE INFORMATION CARD

Waferscale Integration
 47280 Kato Road
 Fremont, CA 94538
 (800) 832-6974
 CIRCLE 328 ON FREE INFORMATION CARD

a 48 -bit serial number. Fancier versions can read or write to 1 K or 4 K bits of internal non-volatile ROM. On yet others, a security code prevents unauthorized reading or altering

The reading and rewriting process is destructive, so very bad things can happen with an erratic contact or a partial write. To beat this, your info is first written to an internal scratchpad area. Only the complete and correct write later gets transferred to main memory. An internal checksum is also provided to let you know if your data is still valid.

In standby mode，the touch memory monitors its receive circuitry and disables its send electronics．
The host computer first enables its tri－state driver and sends out a serial interogation and data code．The host computer then disables its tri－state driver and awaits a reply．
Your touch memory receives the interrogation code and activates its send electronics．The serial number or the requested RAM data is then transmitted．The touch memory then goes into its standby mode to await further commands．
The receiver grabs and interprets the returned data．
To prevent possible contact or destructive write problems，the host computer normally does a read，followed by a write， followed by a verify．

FIG．5－ONLY A SINGLE CONTACT IS NEEDED to read from or write to your touch memory．Here is how it gets done．

Free samples and more technical details are available directly from Dallas Semiconductor．Cost is in the $\$ 1$ to $\$ 3$ range，depending upon the chip features and complexity．
For our contest this month，just tell me something off－the－wall you would do with an electronic dog tag．There should be all of the usual Incredible Secret Money Machine book prizes， with a great all－expense－paid（FOB Thatcher，AZ）tinaja quest for two go ing to the very best of all．
As usual，send your written entries to me here at Synergetics，and not to
Radio－Electronics editoria

New tech lit

From SGS a new Power Modules Databook on high－power transistors， Darlingtons，diodes，and MOSFET ar－ rays．From Siemens，their Optoelectronics Data Book on all the usual LED lamps，arrays，sensors， couplers，and photodiodes．From Waferscale Integration a new data book on High Performance CMOS Memory．
A really exciting new integrated cir－ cuit that l＇ve yet to do anything with is the Philips SAA7199 digital encoder．

It accepts RGB computer inputs and outputs full NTSC or PAL broadcast－ quality video．Included is a full gen－ locking capability and a powerful computer interface．Wow！

You might find the free Personal Engineering trade journal of interest． It mostly covers high end CAD／CAM software and circuit layout programs．
The American Voice I／O Society， otherwise known as AVIOS，does ex－ actly what you＇d expect them to． They also put on seminars on speech synthesis and recognition．
A freebie folder full of electronic tubing samples is available through Markel who stocks everything from shrink tubing up to a very high tem－ perature sleeving．One collection of books on energy management，air conditioning，and humidity control，is available through the Business News Publishing Company．
For the fundamentals of digital inte－ grated circuits，do check into my classic TL Cookbook and CMOS Cookbook．Autographed copies are available from my own Synergetics． My newest Book－on－demand Re－ source File should also be ready by the time you read this

CIRCLE 108 ON FREE INFORMATION CARD

THE MONEY MAKING OPPORTUNITY OF THE 1990＇S
If you are able to work with common small hand tools，and are familiar with basic electronics（i．e．able to use voltmeter，understand DC electronics
If you possess average mechanical ability，and have a VCR on which to practice and learn．．．．then we can teach YOU VCR maintenance and repair！
FACT：up to 90% of ALL VCR malfunctions are due to simple MECHANICAL or ELECTRO－MECHANICAL breakdowns！
FACT：over 77 million VCRs in use today nationwide！ Average VCR needs service or repair every 12 to 18 months！
Viejo＇s 400 PAGE TRAINING MANUAL（over 500 pho－ tos and illustrations）and AWARD－WINNING VIDEO TRAINING TAPE reveals the SECRETS of VCR mainte－ nance and repair－＂real worid＂information that is NDT available elsewhere！
Also includes all the info you＇ll need regarding the BUSINESS－SIDE of running a successful service op－ eration！

FREE INFORMATION
CALL TDLL－FREE 1－800－537－0589
Or write to：Viejo Publications Inc
5329 Fountain Ave
Los Angeles，CA 90029 Dept．RE

SIMPLE FM TRANSMITTER

This handy FM transmitter makes a great one-evening project, even for first-time builders!

JAMES A. MELTON

THERE IS NO THRILL LIKE THE THRILL you get from operating equipment you have built yourself. If you have never built a project from a magazine before, let this FM transmitter be your firstyou'll see how much satisfaction and fun you can have!

The FM transmitter is designed to run from a 9 -volt battery and is made from readily available parts. The author's primary use is as a baby monitor, but the uses of a transmitter like this one are almost limitless. It is very sensitive, and easily capable of picking up a conversation in any part of a room. The dimensions and values given here will allow static-free reception within the perimeter of most homes.

No license is required for this transmitter according to FCC
regulations regarding wireless microphones. (The emissions must stay within a band of 200 kHz , its output between 88 and 108 MHz , and the field strength of the radiated emissions must not exceed $50 \mu \mathrm{~V} / \mathrm{m}$ at a distance of 15 meters from the device.) If powered from a 9 -volt battery and used with an antenna no longer than 12 inches, the transmitter's radiated power will be within the FCC limits. The FCC takes a dim view of persons operating outside the legal power limits, so please do not substitute any components in this circuit which would alter the output power.

Circuitry

Take a look at the schematic in Fig. 1. Audio is picked up from the room by an electret micro-
phone and amplified by Q1. Resistors R2-R5 set up the DC operating bias of Q1. Capacitor C3 serves to improve the AC response to the audio voltage, and C2 blocks the DC bias and couples the AC to the next stage, where the RF action takes place. The amplified AC voltage from Ql is routed to the base of G 2 . Transistor 82 and associated circuitry (C5 and the inductor) form an oscillator that operates in the $80-130 \mathrm{MHz}$ range. The oscillator is voltage-controlled, so it is modulated by the audio voltage that is applied to the base of g_{2}.

Resistor R6 limits the input to the RF section, and its value can be adjusted as necessary to limit the volume of the input. That will help control the amount of distortion you have on very loud inputs. Resistors R7-R9 set the DC operating bias of Q 2 , another 2 N 2222 that's used as the oscillator and modulator of the transmitter. Capacitor C5 is a $6-50 \mathrm{pF}$ trimmer capacitor that's used to tune the oscillator tank circuit, and $C 4$ routes the $R F$ from the oscillator to ground to prevent unstable operation.

Construction

The FM transmitter is built on a piece of perforated construction board with 0.l-inch hole spacing. Component spacing is not critical, but placement is. You should place the components on the board in a layout that is similar to the prototype shown in Fig. 2. Generally, you will also want to make the transmitter as small as possible.

Let's start from the left side of the schematic and work to the right. You'll want to cut out a piece of perfboard that is 12 holes wide and 30 holes long. That will give you plenty of room to work with, but still produce a small unit. First lay out two power lines on the board with bare wire; the positive supply from the battery will be on top, and the negative (ground) will be on the bottom.

A 1 K resistor (Rl) supplies the bias voltage for the microphone. Remember to install the resistor vertically, next to the positive supply line, and bend the other end of the lead to the board. Go through the board and down toward the ground bus. Now insert the microphone leads into the

MIDI	$\substack{\text { mudi } \\ \text { Projects }}$
PROJECTS	

BP182－MIDI interfacing enables any so equipped instruments，regardless of the man－ ufacturer，to be easily connected together and used as a system with easy computer control of these music systems．Combine a computer and some MIDI instruments and you can have what is virtually a programmable orchestra．To order your copy send $\$ 6.95$ plus $\$ 2.50$ for shipping in the U．S．to Electronic Technology Today Inc．，P．O．Box 240，Massapequa Park， NY 11762－0240．

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION

BP277－Here＇s background and practical de－ sign information on high power audio ampli－ fiers capable of 300 ± 400 watts r．m．s．You＇ll finc MOSFET and bipolar output transistors in inverting and non－inverting circuits．To order your copy send $\$ 6.25$ plus $\$ 2.50$ for shipping in the U．S．to Electronic Technology Today Inc．，P．O．Box 240，Massapequa Park，NY 11762－0240．

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam．The NEW EXAM covers updated marine and aviation rules and regulations， transistor and digital circuitry． THE GENERAL RADIOTELEPHONE OPERATOR LICENSE－STUDY GUIDE contains vital information．VIDEO SEMINAR KITS ARE NOW AVAILABLE．

WPT PUBLICATIONS 979 Young Street，Suite E Woodburn，Oregon 97071

Phone（503）981－5159 Dept． 50

CIRCLE 183 ON FREE INFORMATION CARD

FIG．1－FM TRANSMITTER SCHEMATIC．When powered from a 9 －volt battery and used with an antenna no longer than 12 inches，the radiated power will be within the FCC limits．

FIG．2－THE AUTHOR＇S COMPLETED PROTOTYPE．Notice how the antenna is soldered to the coil，about 2 turns from the transistor side．
board，making sure that the ground lead of the microphone can be soldered to the ground bus on the board．Route the lead from R1 to the positive lead of the mi－
crophone and solder it．The $10-\mu \mathrm{F}$ capacitor， C 1 ，should be placed in the middle of the board． oriented as shown on the sche－ matic，and soldered to the micro－

PARTS LIST

All resistors are $1 / 8$－watt， 5% ．
R1，R6－ 1000 ohms
R2－15，000 ohms
R3－ 6800 ohms
R4－ 10,000 ohms
R5，R7－4700 ohms
R8－2200 ohms
R9－220 ohms

Capacitors

C1，C3－ $10 \mu \mathrm{~F}, 25$ volts，electrolytic
C2－2．2 $\mu \mathrm{F}, 25$ volts，electrolytic
C4，C7－ $0.1 \mu \mathrm{~F}, 25$ volts，ceramic
C5－5－60 pF trimmer
C6－hand－made capacitor（see text）

Semiconductors

Q1，Q2－2N2222 NPN transistor Other components
L1－hand－made coil（see text）
Miscellaneous：perforated con－ struction board， 9 －volt battery，bat－ tery clip，electret microphone，24－ gauge insulated wire，bare wire， solder．etc．
phone／R1 junction．
This project requires two hand－made parts－coil Ll and capacitor C6－but you make both of them yourself using only wire and a common pencil for a coil form．The inductor is made by winding two pieces of 24 － gauge insulated wire，laid side by side．around a pencil six times． Remove the coil you have formed and unscrew the two coils apart from each other．One of these coils，the better－looking of the two，will be used in the tank cir－ cuit（L1）and the other can be continued on page 99

OEM, custom models, and private labels: Inside marketing information for the audio consumer.

LARBY KLIIN

several months back I had a small adventure that may serve as a cautionary tale. It all started when my almost-20-year-old washing machine had a final, unfixable breakdown. My wife researched the new machines in Consumer Reports and decided on a Maytag. We went shopping at Trader Horn, a large discount appliance store, where we selected a Maytag that seemed to have the features we wanted in our price range. Before handing over our plastic, we reaffirmed with the salesman that the store would refund the difference if we found our chosen machine advertised elsewhere at a lower price in the next 30 days.

Several weeks later, I came across a Maytag catalog in another store and idly leafed through it looking for our washer. Its model number and specific combination of features was nowhere to be found, although all of the other machines bore a family resemblance to the one we bought. Puzzled, I called Maytag's 800 number and was told that my washer was a "special-order unit" and not part of the other Maytag line. In a flash, it all became clear-and demonstrated that I can be as naive as the next guy when shopping outside my areas of experience and expertise

Custom models vs. house brands

Many years ago I became aware of a marketing technique in the audio industry that I found slightly offensive from my holier-than-though perspective of the time. Several of the largest phono-cartridge manufacturers were marketing their high-end cartridges under special model numbers to large audio dealers and chains. The idea simply was to prevent comparison price shopping by audiophiles seeking discounts. Stores selling a Stanton, or a Shure, or an Audio-Technica with special model numbers could easily guarantee that you couldn't buy the same model
elsewhere forless. The custom-labeling technique provides the dealer with a proprietary house model that nevertheless has the advantage of bearing a well-known manufacturer's name.

The true house brand works somewhat differently. For example: Many large discount audio dealers have found it profitable in the past to market their own brand of speaker systems that usually do not bear the store's name. Speakers are especially suitable for that ploy because they are a "blind" item. That means there's no way for a layman, even if he peeked behind the grille cloth, to judge the quality-and hence the costliness-of the drivers (and crossover) housed in the enclosure. And since audio neophytes frequently can't tell good sound from bad, cheap inferior designs can be sold at large fictitious discounts, which nevertheless provide a far higher profit margin than the standard brands.

A manufacturer of private-label speakers once complained to me that each year when his contract expired, his major dealer would seek a new, lower price on the product. And the manufacturer, if he wanted to continue doing business, had to further cheapen the system. The resulting deterioration in sound didn't bother the dealer as long as the external appearance of the system was pretty much maintained.

Occasionally, you could have a quasi-house-brand situation where a speaker brand might be sold nationally under its own name, but a large dealer or chain might have an exclusive in their own selling area. That brings up the question of limited dis-tribution-which l'll discuss later.

OEM

The term "original equipment manufacturers" originally referred to parts suppliers who provided the resistors, capacitors, and other components
used by manufacturers in their products. The term has broadened to include those manufacturers who supply complete products with the brand label-and front panel-of your choice. At one time, when my wife was involved in use-testing VCR's for Videoplay magazine, she happened to have for testing VCR's from Quasar, Panasonic, and Magnavox. Despite the fact that their front panels, knobs, and pushbuttons were all different, once the top covers were removed, it was obvious from the identical innards that they all came off the same (probably Matsushita) assembly line. (The fact that each of the three machines performed differently at the slow speed was almost certainly the result of random alignment and QC differences rather than circuit differences.)

A number of former American brand names are now owned by Japanese, Taiwanese, and Koreans, who are producing quite creditable equipment under those names. I know of one U.S. manufacturer who produces his limited production, big-ticket items at home and farms out his receivers and other mass-market items to Far-Eastern factories. Other U.S.-owned brand names are all produced overseas but with the cosmetics, features, and sometimes the circuitry specified here

Fair trade

A now-obsolete term, a "fair traded" component was one that the dealer was not allowed to sell for less than the manufacturer's list price. Declared an illegal practice about 10 years ago, fair trade was replaced by various limited distribution schemes. In order to maintain control of the products' retail prices, the manufacturer would sell only to dealers who were also concerned with maintaining a no-discount policy on the product. A manufacturer has the right to sell only to those dealers who conform to certain criteria (demo facili-
ties，salesperson competence，quali－ ty image，etc．），but a no－discount policy was not something that could be legally demanded．

Over the years，all this has engen－ dered a number of dealer－manufac－ turer lawsuits，with the deaier usually doing the suing．I testified as an ex－ pert witness in one case where a lim－ ited－distribution（at the time）Japa－ nese manufacturer was being sued by a large audio retailer．The retailer＇s． claim was that the manufacturer＇s representative had promised him the
line and taken a large order，but it was never delivered because he dis－ covered that the retailer also owned a discount－appliance operation．The dealer was suing for $\$ 100,000$ in damages because he claimed that he kept a section of his store empty awaiting the arrival of the ordered equipment and lost substantial sales as a result．

How did I get into the act？The manufacturer＇s lawyers wanted me to testify that the dealer could have filled his shelves with other brands of
quality equipment that would have sold just as well．In other words，I said to the lawyers，you want me to say that the equipment under dispute was good，but nothing special．They nodded．I told them that I would be happy to testify to that effect，since that＇s exactly what I had been telling the company sales manager for years．In any case，I did my expert witness number at the trial－and the judge ruled against us．The manufac－ turer subsequently won on appeal without my help．

R－E

ELECTROMAGNETICS

continued from page 69

$$
L=\Phi / I=\left(\int \mathbf{B} \cdot d \mathbf{s}\right) / I(H)
$$

Since B may not be constant across the area，we sum each infi－ nitesimal contribution by inte－ gration．Note that we＇re con－ cerned with the flux through the enclosed area，not the total flux through a Gaussian surface en－ closing the loop，which is zero． For simple materials，L is inde－
pendent of I since the equation $\mathbf{B}=\mu \mathbf{H}$ is proportional to I．How－ ever，L is dependent upon the area since the equation $\int \mathbf{B} \cdot \mathrm{ds}$ de－ pends on the total area being summed．The inductance（ L ）is also dependent on μ ．

We can use Ampere＇s law to see that effect．In empty space， $\mathbf{M}=0$ and there are no bound currents， so we can say

$$
\nabla \times \mathbf{H}=\nabla \times \mathbf{B} / \mu_{0}=J_{f}
$$

and

$$
\nabla \cdot \mathbf{H}=\nabla \cdot \mathbf{B}=\mathbf{0} .
$$

With a simple material filling
space， $\mathbf{H}=\mathbf{B} / \mathrm{mu}$ ，so

$$
\nabla \times \mathbf{H}=\nabla \times \mathbf{B} / \boldsymbol{\mu}=\mathbf{J}_{\boldsymbol{f}}
$$

and

$$
\nabla \cdot \mathbf{H}=\nabla \cdot \mathbf{B} / \mu=0 .
$$

Since the divergence and curl of the field completely characterize the fields， \mathbf{B} is larger by $\mu / \mu_{o}=\mu_{r}$ in a filled inductor．

In our next article，we＇ll look at the effects of electric and magnet－ ic fields as they change with time． We＇ll see that these fields are so closely related to each other that they lead to a single electromag－ netic field．

R－E

Try the

Eleritrnnics．

bulletin board system

（RE－BBS） 516－293－2283

The more you use it the more useful it becomes．

We support 1200 and 2400 baud operation．

Parameters：8N1（8 data bits，no parity， 1 stop bit）or 7E1（7 data bits，even parity， 1 stop bit）．

Add yourself to our user files to increase your access．

Communicate with other R－E readers．

Leave your comments on R－E with the SYSOP．

RE－BBS 516－293－2283

Don＇t let tight budgets keep you from the function generator performance you need， $B+K$ PRECISION has the industry＇s most complete line of cost effective generators．．．．nine in all．All are rugged lab－grade instruments that will perform as promised，every time． Here are just two examples．
13 MHz Universal Function Generator with Frequency Counter

2 MHz Function Generator

－ 0.1 Hz to 13 MHz output
Sine，square，triangle，ramp，pulse，triggered， gated burst，TTL outputs
－Two built－in generators can be used independently or together for AM or FM －1000：1 sweep range
－Variable symmetry for unlimited waveforms
Built－in 30 MHz frequency counter
Model $3040 \$ 1,19500$ 0.2 Hz to 2 MHz －Sine，square，triangle，ramp and TTL or CMOS output －Four－digit frequency display －Variable DC offset Variable symmetry

For more information on the complete line of $B+K$ PRECISION function generators or for immediate delivery，contact your local distributor or $B+K$ PRECISION．

MAXTEC INTERNATIONAL CORP． Domestic and International Sales 6470 W．Cortland St．，Chicago，IL 60635 312－889－1448•FAX：312－794－9740

SELECT 5 BOOKS for only $\$ \mathbf{4}^{95}$

(values to \$119.75)

$3414 \quad 539.95$
Counts as 2

$2613 P \quad \$ 17.95$

$3677 \quad \$ 34.95$
counts as 2

2980 P $\$ 19.95$

ELECTRONIS
Provecto
FOR
TRANSCONDUCTANCE
TRANSOONDUCTMPS
8 NORTON OP MPS

$$
\begin{gathered}
3455 \\
\text { Counts as } 225.95
\end{gathered}
$$

3329
counts as 229.95

$3656 \mathrm{P} \$ 17.95$

$804 \mathrm{P} \quad 521.95$
$2790 \mathrm{P} \quad 514.95 \quad 804 \mathrm{P} \quad 521.95$

Your most complete source for electronics books for over 25 years.

Membership Benefits - Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. - Club News Bulletins. 15 times per year you will receive the Book Club News, describing all the current selections-mains, alternates, extras-plus bonus offers and special sales, with scores of titles to choose from. - Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. - Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! - Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.
(Publishers' Prices Shown)
All books are hardcover unless number is followed by a " P " for paperback. (c) 1991 ELECTRONICS BOOK CLUB, Blue Ridge Summit, PA 17294-0810

IN Electhanics BathCubs
 Blue Ridge Summit, PA 17294-0810

\square YES! Please accept my membership in the Electronics Book Club and send the 5 volumes listed below, billing me $\$ 4.95$. If not satisfied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purchase at least 3 books at regular Club prices during the next 12 months and may resign any time thereafter. A shipping/handling charge and sales tax will be added to all orders

Name
Address
City
State
Zip \qquad Phone

Signature
Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by the Electronics Book Glub. RE1191

COMPDTHR CDNNPGTIONS

A new wave in the computer industry.

JAFF HOLTZMAN

IBM and Apple's much-heralded pact was only the first in a new wave of strategic alliances and company buyouts that promises to dramatically shift the balance of power in the computer industry-and in the process affect the nature of every hardware and software product that we use. Since then, Borland bought Ashton-Tate, Novell bought Digital Research, and IBM bought Metaphor Computer Systems. In addition, HP and Sun announced that they have teamed up to deliver an OS-independent programming layer that would allow one application to run on multiple platforms-much like what Metaphor has been working on for some time.

On the hardware front, Intel continues to show more and more marketing creativity, along with correspondingly less technical innovation. Some recent tactics have brought the scrutiny of the FIC down on the chipmaking giant.

IBM/Apple/Microsoft update

Microsoft seems to be reeling from recent events. Lately the company has been denigrating OS/2 viciously, and making confusing statements about the directions of DOS 6.0, future versions of Windows, and what used to be called $O S / 2$ 3.0, but more recently, both New Technology (NT) and Win32. Microsoft is retrenching on its former commitment to make the new OS run DOS, Windows 3 , OS/2 2.0, and POSIX API's simultaneously. Microsoft seems to have dropped support for OS/2 and POSIX, added support for the ACE/ MIPS initiative (one report claims that MIPS Computer already has an early version of NT code running at its premises), and is trying to figure out what should be the relationship between DOS 6.0. Windows 4.0, and the NT OS

Meanwhile, IBM seems to be on track with $O S / 2$ 2.0, scheduled for release this fall. As for DOS com-
patibility, Big Blue already offers more memory and better disk performance on the same hardware running DOS 5.0 ; the main issue has been Windows 3.0 compatibility. Win3 has been running for a while in real mode; recently, IBM has shown but not released a protected-mode version. If IBM can get this product out on time and achieve the aggressive performance and compatibility goals it has set for itself, Microsoft is right to be nervous. It seems likely that 1991 will be remembered as the year Microsoft lost dominance in both operating systems and graphical environments.
IBM purchased Metaphor, in which it previously held a ten percent share, and will contribute the object-oriented Constellation software developed at Metaphor to the IBM/ Apple venture. (Apple will contribute the "Pink" OS, which has been under internal development for several years.) David Liddle, former president of Metaphor and a pioneer at Xerox's Palo Alto Research Center (PARC) in the early 1980's, appears to be slated
to run the new joint venture. IBM is now reorganizing its top management extensively, apparently to ensure that the new venture is not slowed down by IBM traditionalists.

Borland/Ashton-Tate

These are two of the older companies in the PC business, both with products going back to CP / M days. However, since then, A-T has only incrementally improved its flagship product (dBASE), and has invested heavily in other products that have never achieved the type of commercial success A-T needed to stay afloat. On the other hand, Borland has continually beefed up its product line and specific items in it, particularly its Pascal and C compilers, and its Paradox database system.

The deal roughly doubles Borland's overall size (to about $\$ 450$ million), making it the third largest software company, behind Microsoft and Lotus. Together, dBASE and Paradox account for more than 50% of the programmable database market.

Fig. 1-THE NORTON DESKTOP FOR WINDOWS includes a powerful but intuitive file manager, batch language, many useful utilities, and a Mac-like drag-and-drop interface. Good stuff.

Even before the deal has been final－ ized，Ashton－Tate began layoffs．
The biggest question about the deal is how the new software giant will reconcile the two competing database lines．Before the merger was announced，Borland had shown early versions of a Windows－based dBASE－compatible system．A－T was also thought to be working on a Win－ dows database product．In any case， it seems likely that Borland will merge the Paradox and dBASE lines to－ gether，then gradually phase dBASE out altogether．

Novell／Digital Research

In the late 1970＇s，Digital Research delivered the first widely supported operating system for 8 －bit microcom－ puters，CP／M．However，due to mar－ keting blunders，the company lost the bid to supply IBM with an operat－ ing system for its new PC back in August of 1981．Microsoft won the bidding and bought a 16 －bit clone of CP／M from a small company in Seat－ tle．The rest of that story is history．

Meanwhile．Digital Research hung on for dear life，producing a lackluster 16 －bit version of $C P / M$ ，and subse－ quently a graphical environment called GEM that helped keep the company afloat during the mid 1980＇s through popular support of the first versions of the desktop publishing program，Ventura Publisher．DR also produced several graphical tools， some of which were fairly well re－ ceived．Meanwhile，DR also con－ tinued to produce operating system products，including a somewhat awk－ ward multi－tasking environment called Concurrent DOS 386 that competed with DESQview，Om－ niView，and IGC＇s VM／386（all of which have been written up here in the past）．

Then，about a year and a half ago， the company introduced DR－DOS 5．0，which in retrospect looks much like MS－DOS 5．0．The program re－ ceived fairly good press，but achieved little market penetration．Now，with seemingly everyone in the world PO＇d at Microsoft，and with the ac－ quisition by Novell，and with a re－ newed relationship with IBM，DR DOS is starting to look interesting．

After news of the acquisition was released，the trade press imme－ diately started speculating about how serious a threat Novell／DR would pose to Microsoft．What those re－
ports fail to understand is that（1）The 640 K －bound real－mode DOS is dying， regardless of who makes it；（2）The plain command－line interface is dying， to be replaced by Windows，OS／2，or perhaps in the long run the system－ software component of the new Ap－ ple／IBM venture；（3）Novell／DR has a 640 K －bound workstation operating system with no GUI；（4）Novell＇s net－ work operating system is not DOS but UNIX based，so is not impacted in any way by the merger．In sum，strate－ gic importance of this deal is zilch．

News bits

Amiga fans：NewTek has dem－ onstrated version 2.0 of the Video Toaster software that provides en－ hanced video effects，the ability to transition smoothly between different surface effects（a technique called ＂morphing＂），faster shadow calcula－ tions，animated texture maps，and more．Complete systems including an Amiga， 5 MB of memory，and a 50 － megabyte hard drive start at about $\$ 4000$ ．

Signetics has released the SAA7199，a multi－standard vid－ eo encoder chip that will allow vid－ eo editing，titling，and special effects on standard PC＇s．The chip can work with standard 8 －and 24 －bit video sys－ tems，including VGA，and can deliver standard PAL and NTSC video sig－ nals．At less than $\$ 50$ in small quan－ tities，the SAA7199 will help make desktop video as prevalent as the VCR．

Intel has now publicly shown dual－ speed 486SX＇s：the company plans to sell chips directly to end users by year end．IBM has de－ veloped and is now producing for in－ ternal use only a proprietary 20 －

MHz 386SX with 8K cache．

Conner peripherals is known for miniaturized disk drives sold in to－ day＇s sleek notebook and portable PC＇s．Now the company has teamed up with Intel to begin developing a solid－state disk drive based on Intell＇s flash memory technology．The drives，scheduled for availability by 1996，will have capacities ranging from 40－120 MB，will be cost com－ petitive with drives based on magnet－ ic technology，but will consume less power，occupy less space，and weigh less as well．

Toshiba claims it will be selling 16－ megabit DRAM＇s in quantity by 1992；IBM has plans to start using its
own 16Mb DRAMS＇s in PS／2＇s next summer．OEM prices for 1 Mb and 4Mb DRAM＇s reached the crossover point early this summer，which means the beginning of the end for 1 Mb parts．A joint venture between TI ， Acer，the Chinese government，and several banks has instilled $\$ 140$ mil－ lion in a new plant in Taiwan that re－ cently began producing 4 Mb chips． with plans for 16 Mb devices some－ time next year．A new trade accord between the U．S．and Japan may force DRAM prices up 10－15\％， further slowing an already slow PC market．

Product watch

Symantec has finally released the Norton Desktop for Windows．NDW can function alongside or in place of the Program and File managers in Windows 3．0．I started using NDW with the FileMan and ProgMan，but soon gained enough confidence to use it as the sole interface in both my home and office PC＇s．What NDW does is ratchet Win3 one level closer to Mac－like ease of use．In the default configuration，the highly customiza－ ble program displays a list of icons corresponding to each floppy，hard， substituted，and network drive down the left side of your screen．Double click on an icon，and up pops a tree－ structured view of the corresponding drive，as shown in Fig．1．You can then copy，move，erase，and view（but in a strange oversight not compare）files． These operations work the way they should：select a file，move the cursor to the new location，and release the mouse button．An optional＂view＂ pane allows you to view many com－ mon file types in the correct format．

On the right side of the screen are icons corresponding to specific tools．Double－click on an icon，and the corresponding program runs．You can associate icons with documents too；when you double－click，the cor－ responding application program runs．
Supplied tools include a nifty icon editor；a font viewer for locating odd symbols in any font；an excellent file search utility；two calculators；a back－ up program（that supports only floppy and hard drives，not tape drives）；a scheduling utility that will run any pro－ gram at a given time on a given date， once or repetitively；a powerful batch language and editor；Windows ver－ sions of Norton＇s famous System
continued on page 100

MARKET CENTER

FOR SALE

TUBES: "oldest," "latest." Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave., R.R., Hammond, IN 46324.

ENGINEERING software, PC/MSDOS. Circuit design and drawing, PCB layout, Logic simulation, FFT analysis, Mathematics, Circuit analysis. Call or write for free catalog. 1 (800) 728-3805, BSOFT SOFTWARE, INC., 444 Colton Rd., Columbus, OH 43207.

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1976! Catalog $\$ 2$

GBC TNTERNATTOKAL

P.O. BOX 31500RE, PHOENIX, AZ 85046

CABLE TV converters: Jerrold, Oak, Scientific Atlantic, Zenith \& many others. "New MTS" stereo add-on: mute \& volume. Ideal for 400 and 450 owners! 1 (800) 826-7623, Amex, Visa, M/C accepted. B \& B INC., 4030 Beau-D-Rue Drive, Eagan, MN 55122.
TUBES, new, up to 90% off, SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
CABLE TV converters and descramblers. We sell only the best. Low prices. SB-3 \$79.00. We ship C.O.D. Free catalog. ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072.1 (800) 234-0726.

Quality Microwave TV Antennas WIRELESS CABLE - IFTS - MmDS - Amateur TV Ultra High Gain $50 \mathrm{db}(+)$ - Tuneable 1.9 to 2.7 Ghz - 36-Channel System Complete $\$ 149.95$ - $\mathbf{C l}$. a wito (SASE) fo "FREF" Catal - CIIPS TECH ELECTRONICS PHILLIPS-TECH ELECTRONICS
P.O. Box 8533 - Scottsdale, AZ 85252 (602) 947-7700 (\$3.00 Credit all phone orders)
T.V. notch filters, phone recording equipment, brochure $\$ 1.00$. MICRO THinc. Box 63/6025, Margate, FL 33063. (305) 752-9202

CABLE CONVERTERS all major brands info + orders 1 (800) 782-0552 FREEWAY INC. s.m.p., PO 5036, Burnsville, MN 55337

CIRCUIT Center - Complete circuit fabrication from single piece single sided to production multilayer. Also - Laminate $\$ 5.50 / \mathrm{sq}$. ft., etch $\$ 3.50 /$ qt. Thru hole plating available too. CIRCUIT CENTER, Dept. 001, PO Box 128, Addison, IL 60101. (708) 543-0671

FREF CAIALOG

famous "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PROOUCTS FOR THE SERIOUS CB'er. SINCE 1962 FIRESTK ANTENNA COMPANY 2614 EAST ADAMS PHOENIX, ARIZONA 85034

XOTIC miniature electronic devices catalog $\$ 5.00$, refundable. F \& P ENTERPRISES, Box 51272 , Palo Alto, CA 94303-L.

CRIBSHEET laminated, of commonly used elec tronic formulas and symbols. $\$ 3.00$ to HUMEX 16365 Ahyolite Circlet, Reno, NV 89511.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 25.00$.

```
( ) Plans/Kits ( ) Business Opportunities ( ) For Sale
( ) Education/Instruction ( ) Wanted ( ) Satellite Television
( )
```

Special Category: $\$ 25.00$

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.)

Card Number
Expiration Date
\qquad
Please Print Name
Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 3.10$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. 5% discount for same ac in 6 issues; 10% discount for same ad in 12 issues within one year, if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 2.50$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 550 per word additional. Entire ad in boldface, $\$ 3.70$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 4.50$ per word. EXPANDED TYPE AD: $\$ 4.70$ per word prepaid. Entire ad in boldface, $\$ 5.60$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 5.90$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 6.80$ per word. DISPLAY ADS: $1^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 410.00 ; 2^{\prime \prime} \times 214^{\prime \prime}-\$ 820.00 ; 3^{\prime} \times$ $2^{1 / 4^{\prime \prime}}$ - $\$ 1230.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 5 th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 5 th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card

WIRELESS CABLE RECEIVERS 1,9 TO 2.7 CHz

30 CH PARABOLIC OISH SYSTEM $\$ 173.90$ 30 CH ROD ANTENNA SYSTEM $\$ 193.90$ 30 CH CRYSTAL CONTROLLEO SYSTEM $\$ 29495$ SUN MICROWAVE INTL. INC, SEND \$1.00 FDR P.D. BOX \#34522 CATALDG ON THESE PHOENIX. AZ. 85067 AND DTHER FINE (602) $230-1245$ qUANTITY DISCDUNTS
ORDERS OWLY 1-800-484-4190 COOE 9793

OSCILLOSCOPE 50 MHz , dual channel, solid state calibrated, manual $\$ 2501$ (800) 835-8335.
DESCRAMBLERS: Oak Sigma, Varisync, Hamlin, Scientific Atlanta, Jerrold, Pioneer, Sylvania. Cata$\log \$ 5.00$ moneyorder (credited first order), service manuals, schematics, SURPLUS ELECTRONICS, PO Box 10009 , Colorado Springs, CO 80932.
CABLE TV descramblers. Absolutely the lowest prices! All major brands. Money Back guarantee. Call us last! ADVANCE ELECTRONICS, 2140 Shattuck \#2082, Berkeley, CA 94704. 1 (800) 659-3018.
"C.B. radio repair specialist." All makes and models. Modifications, sales, etc. LOU'S C.B. SHOP, (508) 866-3226.
ELECTRONIC supermarket surplus prices! Transformer specials, railroaders, builders, engineers, experimenters, LSASE, FERTIK'S, 5400 Ella, Phila., PA 19120

CABLE DESCRAMELERE OAK MB5E COMBO SB9.95 Jerrold, Zenith, Hamlin, Sci. Atlanta, Pioneer \& MORE! OUR PRICES ARE BELOW WHOLESALE! CABLE+ PLUB
 14417 Chase St. \#481-A Panorama City, CA 91402 1-800-822-9955 - Other Info. 1-818-785-4500 NO CALIF. SALES - DEALERS WANTED

TOCOM-Jerrold Impulse-Scientific Atlanta 8580 \& 8590 converters with two yr. warranties, also test modules for Star Comm $6 \& 7 \mathrm{~s}$, all Tocoms, and Scientific Atlanta. Full details. (219) 935-4128.
DESCRAMBLERS cable TV converters, lowest prices, guaranteed, best quality, special Sacramento units, CNC CONCEPTS, INC., Box 34503, Minneapolis, MN 55434. 1 (800) 535-1843.
TOCOM and Zenith "test" chips. Fully activates unit. $\$ 50.00$. Cable descramblers from $\$ 40.00$. Orders 1 (800) 452-7090. Information (213) 867-0081.

> 4ELECTECH 4
> CABLE T.V. DESCRAMBLERS
> All quality brand names
> - All fully guaranteed. All the time Knowledgeable Sales Service Department FOR FREE CATALOG 800-253-0099

DIGITAL meters, Modutec Big-Little. Special low prices! BL176-XXX \$15.00, other models available. Limited quantities. TORTEC CORPORATION, 7514 Oliver Avenue, Minneapolis, MN 55423. Phone (612) 866-3662. Fax (612) 866-9517

INSIDE information, cable television converters, descramblers, traps, VCR/cable hook-ups and more $\$ 7.95$. One free "any cable question answered guaranteed" with book, all others $\$ 3.00$ each. ON-LINE ENTERPRISES, Box 740178, Arvada, CO 80006
PRINTED circuit CAD software! PC-trace, proven IBM-PC shareware, has gone commercial. Includes: graphic layout, autorouting, schematic capture. Output: printers, pen/photo plotters, autocad. $\$ 95.00$ postpaid Visa/MC EHLERS TECHNICAL CONSULTANTS, (402) 483-4480 voice/fax/ modem.

[^3]
Ferro Fluid

Pro-Tech ferro fluid is commonly used on voice coils to substantially improve frequency response, increase transient and continuous power hand ling capabilities and reduce second and third order harmonic distortion. It reduces the 0 and lowers the impedance peak at resonance without a significant reduction in SPL. Ferro fluid can
 effectively increase power handling capability of a driver by $200-300 \%$. General purpose fluid for tweeters and midranges only. 10cc bottle (enough for 75-100 tweeters).
\#RM-340-430

Light Oak Speaker Cabinet
Premium ported speaker cabinet made of acoustical grade
 particle board and covered with a light oak vinyllaminate. Precut with an $11.1 / 4^{\prime \prime}$ hole for use with most 12 " wooters. The batfle board has no tweeter or midrange holes for design flexibility. The 3/4" thick particle board ensures low panel resonance. Dimensions: $11^{\prime \prime} \times 15^{\prime \prime} \times$ 27". Volume: 2.5 cu ft . Grill and terminal included. Sold indivioually.
\#RM-262-100

Each

340 E. First St., Dayton, Ohio 45402 Local: 1-513-222-0173 FAX: 513-222-4644

12 Gauge Neon Wire

The competition in today's auto sound contesis is so fierce that good sound alone is not enough to win. More and more installers are striving to make the ir installation more pleasing to the eye. Parts Express now stocks
12 gauge speaker wire in vibrant neon colors. This wire is the same high quality, made in the U.S. wire you have used before, but now it has flashy, neon colored insulating jackets. Available in neon pink, neon green, and neon orange. Sold by the foot on or 50 ft . spools.
\#RM-100-162 (Neon pink) \#RM-100-166 (Neon orange) 49^{c} \#RM-100-170 (Neon green)

Tuned Port Tubes

These attractive, preformedtuned ports allow the back pressure radiated from the rear of the woofer to reinforce the sound level in front. Made of black plastic

Part \#	Length	Dia.	$(1-9)$	(10-up)
\#RM-260-320	$2^{\prime \prime}$	$1-7 / 8^{\prime \prime}$	1.40	.95
\#RM-260-321	$4^{\prime \prime}$	$1.7 / 8^{\prime \prime}$	1.60	1.20
\#RM-260-322	$5^{\prime \prime}$	$2^{\prime \prime}$	1.65	1.30
\#RM-260-323	$1^{\prime \prime}$	$2-7 / 8^{\prime \prime}$	1.40	.95
\#RM-260-324	$5^{\prime \prime}$	$2-7 / 8^{\prime \prime}$	1.85	1.50
\#RM-260-326	$3^{\prime \prime}$	$2-7 / 8^{\prime \prime}$	1.65	1.30
\#RM-260-327	$2-1 / 2^{\prime \prime}$	$3.7 / 8^{\prime \prime}$	1.85	1.50
\#RM-260-328	$5^{\prime \prime}$	$3-7 / 8^{\prime \prime}$	1.95	1.60

Famous Maker 3-1/2" Speaker Pair
Dual cone 3-1/2" speaker pair for upgrading stock dash speakers. Graphite fiber composite woofer cone provides a smooth extended response al all power levels The high frequency radiator (whizzer) takes over from the woofer at $6,000 \mathrm{~Hz}$ and greatly extends the response past 20 KHz . Strontium ferrite magnet. 3/4" high temperature voice coil. Impedance: 4 ohm. Power handling capability: 25 watts continuous, 70 watts peak. Frequency response: 120 $21,000 \mathrm{~Hz}$. Equipped with dust screen. Made in the U.S. by a company with over 40 years experience in the auto sound market.
\#RM-265-275

Subwoofer Input/Output Terminal

This recessed terminal panel has inpuls for right and left channels as well as outputs tor right and left channels to route to your satellite speakers. Greatly simplifies subwooter hook-up. Outside dimensions: $3-7 / 8^{\prime \prime} \times 5-3 / 8^{\prime \prime}$
\#RM-260-308
$\$ 3^{35} \quad \$ 3^{50}$
(1-9)
(10-up)

- 15 day money back guarantee $-\$ 15.00$ minimum order .

 We accept Mastercard, Visa, Discover, and C.O.D. orders. . 24 hour shipping * Shipping charge $=$ UPS chart rate $+\$ 1.00$ ($\$ 3.00$ minimum charge) - Hours $8: 30 \mathrm{am} \cdot 7: 00 \mathrm{pm}$ EST,
CALL TOLL FREE

 Monday - Friday • 9:00 am - 2:00 pm Saturday. Mail order customers, please call for shipping estimate on orders exceeding 5 lbs . Foreign destination customers please send $\$ 5.00$ U.S. funds for cataiog postageExpress

Cable Descramblers

New Auto Tri-Bi guaranteed no flashing \$165.00
SB-3...
TRIMODE
HAMLIN.
SCIENTIFIC-
ATLANTA. OAK M35B... ZENTH $\$ 175.00$
M.D. Electronics will match or beat any advertised wholesale or retail price.
Your best buys and warranties for cable converters and descramblers start with a FREE catalog from MD For Information Call 402-554-0417
To order or request a free catalog
$\mathbf{1 - 8 0 0 - 6 2 4 - 1 1 5 0}$
1-800-624-1150 $\$ 99.00$ ZENITH SUPER $\$ 109.00$ SAAVI................. $\$ 199.00$ $\$ 99.00$ TOCOM................ $\$ 319.00$ EAGLE $\$ 19.00$
$\$ 19.00$. 559.95 $\$ 119.00$ COPY GUARD...... $\$ \$ 8.00$ $\$ 99.00$ STARGATE 2000... $\$ 88.00$

EXCELLERATOR ${ }^{m}$
 CABLE CONVERTERS

 WHEN QUALITY COUNTS

REMOVE LEAD VOCALS
From Records \& CD's
Build this kit for under $\$ 60$ which umoves lead vocals from standard stereo records, CD's, lapes or FM broadcasts. Easily connects to any home component stereo. Perform live with the backgrounds. You can be the lead singer of your favarite band. Detailed Plans. $\$ 4.95$ Weeder Technologies 14773 Lindsey Rd Mt Orab. Ohio 45154

CONTROL your world with your computer! Complete plans, schematics, programs, only $\$ 12.95$ check/m.o. ICDS, Dept-B, PO Box 265, Plainwell MI 49080.

BUILD your owm compact stereo amplifier. Complete PCB artwork and parts list. IC-based, few external components, excellent frequency response. $\$ 9.25$ EZ-CIRKITS, PO Box 150196 , Arlington, TX 76015
CHRISTMAS lighting controller project, controls up to 24 sets of midget lights, 8 a.c. SCR-controlled channels, MC68705P3 microcontroller, 100's of preprogrammed patterns, great with music. Complete kit: $\$ 79.00$ (US) or $\$ 84.00$ (Canada), board and microchip for $\$ 39.00$, includes S\&H. Quickly shipped, CANTEK, 19 W. Water St., Canonsburg, PA 15317. (412) 745-6760.

TUBES - 2000 TYPES

 DISCOUNT PRICES!Early, hard-to-find, and modern tubes. Also transformers, capacitors and parts for tube equipment. Send $\$ 2.00$ for 28 page wholesale catalog.
ANTIQUE ELECTRONIC SUPPLY
6221 S. Maple Ave. - Tempe. AZ 85283 - 602-820-5411.

INVESTIGATORS, experimenters - Quality new plans. Micro and restricted devices. Free catalog. Self addressed stamped envelope required. KELLEY SECURITY, INC. Suite 90, 2531 Sawtelle Blvd., Los Angeles, CA 90064.
DESCRAMBLER kits. Complete cable kit $\$ 44.95$ Complete satellite kit $\$ 49.95$. Add $\$ 5.00$ shipping Free brochure. No New York sales. SUMMIT RE, Box 489, Bronx, NY 10465.

PCB and schematic CAD. \$195.00 IBM EGA CGA Multilayer, rubberband, autovia, NC drill, laser, dot matrix, plotter, library, Gerber, AUTOSCENE, 10565 Bluebird St., Minneapolis, MN 55433. (612) 757-8584 free demo disk.
VIDEOCIPHER II/scanner/cable/satellite modifications books. Catalog $\$ 3.00$. TELECODE, PO Box 6426-RE, Yuma, AZ 85366-6426.
DIGITAL recorder. Digitally record any audio source with special effects. Microprocessor controlled device. Detailed plans, $\$ 9.75$: T. ZURAW, Box 341, Dearborn His, M1 48127
REMOVE VCR copy protection, PCB PAL instructions $\$ 16.50$ w/P\&H, LOGICAL CHOICE, Box 1256 , Lomita, CA 90717.
PROTECT your home for pennies. Alarm kit. Assembles in one night. Thousands already installed. Also receive booklet "How to Install an Alarm System in Your Home." \$24.95: NOBLE ELECTRONICS, 17 Farmington Avenue, Suite 169 , Plainville, CT 06062-1726.
LIGHTNING arrestor for TV's, VCR's, stereos. Build your own that's better than store bought for about $\$ 25,00$. Designed and tested in Central Florida with amazing results. For detailed instructions, send $\$ 6.00$ to MARK RYAN, 529 Marigold Ave., Orlando, FL 32807.

BIOMEDICAL ELECTRONICS

BIOMEDICAL letter covers medical electronics, anatomy, equlpment functions, electrical safety, troubleshooting. PNP PUBLISHING, Box 333 , Brooklyn, NY 11204. (718) 837-9349 extention 55.

SATELLITE TV

FREE catalog - Lowest prices worldwide. SKYVISION, 2009 Collegeway, Fergus Falls, MN 56537. (800) 334-6455. (See full page ad The Shopper section).
VIDEOCYPHER II descrambling manual. Schematics, video and audio. Explains DES, Eprom, Clonemaster, 3Musketeer, Pay-per-view (HBO, Cinemax, Showtime, adult, etc.) $\$ 16.95, \$ 2.00$ postage. Schematics for Videocypher Plus, $\$ 20.00$. Schematics for Videocypher 032, $\$ 15.00$. Collection of software to copy and alter Eprom codes, $\$ 25.00$. CABLETRONICS, Box 30502R, Bethesda, MD 20824.

FREE catalog - Compare our prices for new systems and upgrades. Latest receivers and dishes all top brands. ALPHA SATELLITE DIST., PO Box 197A, Hawthorne, NJ 07507-0197. 1 (800) 535-ALPHA.

WANTED

INVENTIONS/ new products/ideas wanted: cal TLCI for free information/inventors newsletter. 1 (800) 468-7200 24 hours/day - USAVanada.

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.
INVENTORS! Your first step is important. For free advice, call ADVANCED PATENT SERVICES, Washington, DC, 1 (800) 458-0352.

CABLE TV DESCRAMBLERS * CONVERTERS \star and ACCESSORIES.

PANASONIC JERROLD, OAK PIONEER, SCIENTIFIC ATLANTA AND MORE. LOWESTPRICES. FREE CATALOG CABLE READY company
(800) 234-1006

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed AM FM, TV, cable. Information $\$ 1.00$. BROADCASTING, Box 130-F11, Paradise, CA 95967

LET the government finance your small business Grants/loans to $\$ 500,000$. Free recorded message: (707) 449-8600. (KS1).

MAKE \$\$\$! Become an American electronics dealer! Profit opportunities since 1965. Call SCOTT PRUETT, 1 (800) 872-1373

CABLETV DESCRAMBLER LIQUIDATION! FREE CATALOG! Hamlin Combos \$44, Oak M35B $\$ 60$ (min. 5), etc.
WEST COAST ELECTRONICS For Information: 818-709-1758
Catalogs \& Orders: 800-628-9656

Cable TV Descrambler Kits

Universal Kit................. $\$ 55.00$
inctudes all pants and PC Board. Not included is the ac adaptor or enclosure.

Tri-Mode Kit.
$\$ 39.00$
includes all pants. PC Board and AC Adaptor Not Included is the enclosure

SB-3 Kit
$\$ 29.00$
Includes all pants. PC Board and AC Adaptor. Not included is the enclosure

Universal Tutorial
$\$ 9.95$
includes an in depth study of the tecnonology used
and has troubleshooling hints.
Tri-Mode Tutorial............. $\$ 9.95$
Includes a gate by gate study of the circuit and has troubleshooting hints.

Call Toll Free 1-800-258-1134

COD Only

M \& G Electronics, Inc. 72 Orange St., Suite 216 Providence, RI. 02903

MARK V GLECTBONIGS, INC.
Competitive Pricing* Fast Shipping Since 1985

IN CA 1-800-521-MARK (orders only) OUTSIDE CA 1-800-423-FIVE (orders oniy) ORDER BY FAX (213) 888-6858 CATALOG \& INFORMATION (213) 888-8988

Special offer will be given to the
AMPLIFIERS

	AMPLIFIERS	kH	ASSEMB.
MODEL	DESCRIPTION		
TA-28MKz	Digital Vace Merio a a	\$30.00	
TA-SDA/B	Mull-Purpose Melody Generator a	1284	1720
TA-50C	Mull-Purpose Melody (Happy Burnday. Weodd ng March, etc / Generator a	- 1365	18.77
TA-120MK2	35 W Class 'A"Mant Power Mono Amp A.A	3150	42.80
14.300	30 W Multi-Purpose Stigle Channel Amp a	2000	29.00
5M-302	$60 \mathrm{~W}+60 \mathrm{~W}$ Stereo Power Ampliter (with Mic input) A A	7300	85.00
TA-323A	$30 \mathrm{~W} \times 2$ Stereo Pre-man Amp	3150	42.80
TA-377A	State ot the Arl Fuly Complemenitry Symmetrical Fet Pre-Amp A AA	59.95	7500
TA.400	40 W Sold State Mono Amp	2800	3493
TA-477	120W Moster Power Mono Amp a a	6800	8500
5M-720	120W - 120W AC/DC Slereo hi-Fi \& Pre-Main Amp a	7500	8900
TA-800Mk?	120W - I20W Low Tim Pre-Marn Stereo Power Amp 4 A	63.92	
TA.802	80 W + 80W Pure OC $\$$ tereo Maln Power Amp an	45.94	59.72
TA-1000A	100W Dynamic Class 'A' Main Power Mono Amp a*	5000	65.00
TA-1500		73.70	9581
TA-2200	OC Fel Super Class "A OC Pre-Amp an a	4770	5824
TA-2500	HO Pre-Amp wi/10 band graphic equalzer *		7800
TA-2800	BI-FETIC Pre-Amp w/3 way tone conlrol a A	48.90	63.57
TA-3000	Stereo Simulato (For Mono TV or Any Mono Source) a a	2700	38.50
TA-3600	300 W Ha Hu-Fi Power Mono Amp a ma	8500	11000
SM-222	7 Band HI-Fl Graphic Equalzer 4A4	2680	38.80
5M-333	AudioNideo Surround Sound Processor mat **	6500	75.00
SM-665	Dynamic Nase Reduction *	2600	3400
SM-888	Universal Audionideo Karabige Mixer Pre-Amp *		15500
	DIGITAL METERS AND COUNTER	KTI	ASSEME.
SM-43		53450	\$4300
SM-48	412 Hi-Precision DPM $4 \pm$. 3800	4800
SM-48A		4120	52.00
SM-49		36.00	4450
SM-100	150MC Oigital Frequency Counter 1 A 4	7900	9000

* Fully Assembled

WE HAVE THE MOST ADVANCED TECHNOLOGY IN CABLE EQUIPMENT

- BASE BAND
- JERROLD
- PIONEER
- TOCOM
- HAMLIN
- ZENITH
- SCIENTIFIC ATLANTA • OAK

For out of this world prices call WORLDWIDE CABLE $1800-7723233$
FREE CATALOG AVAILABLE
7491 C5 N. FEDERAL HWY., SUIE' 142 BOCA RATON, FL 33487
(-C)/COD/VISA NO RORIDA SALES
CIRCLE 192 ON FREE INFORMATION CARD

*FMX-1 LONG RANGE (3 MI) ULTRA SENSITIVE FM VOICE XMTR with fine tune, range control plus
$\$ 34.50$

MAKE $\$ 75,000$ to $\$ 250,000$ yearly or more fixing IBM color monitors (and most brands). No investment. Start doing it from your home. (A telephone required.) Information, USA, Canada $\$ 1.00$ cash. US funds. other countries \$8.00 RANDALL DISPLAY, Box 2168-R, Van Nuys, CA 91404 USA. Fax (818) 990-7803

EASY work! Excellent pay! Assemble products at home. Call for information (504) 641-8003 Ext. 5192.

ELECTRONIC ASSEMBLY BUSINESS
Start home. spare time. Investment knowledge or experience unnecessary. BIG DEMAND assembling electronic devices Sales handled by professionals. Unusual business opportunity. FREE: Complete illustrated literature BARTA RE OO BUx 248 Walnut Creek. Calif. 94597

[^4]
EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone it cense. Electronics home study. Fast, inexpensive "Free" details. COMMAND, D-176, Box 2824 , San Francisco, CA 94126
PRACTICE troubleshooting on your IBM PC. 32 circuits including diodes, transistors, FETs and op amps. Hundreds of troubles. Visa, MC \$49.95. 3.5 or 5.25 ." Demo $\$ 5.00$. MALVINO INC., 229 Polaris Ave., Mt. View, CA 94043.
BE a recording engineer; Train at home for high paying - exciting careers. Free information. AUDIO INSTITUTE, 2258-A Union St., Suite K, San Francisco, CA 94123

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975. 1 (800) 338-5656.

SIMPLE FM TRANSMITTER

continued from page 85
used in the next one you build.
The other hand-made component, capacitor C6, is part of the oscillator feedback. To make this small value capacitor, take a 4 inch piece of 24 -gauge insulated wire, bend it over double and, beginning $1 / 2$-inch from the open end, twist the wire as if you were forming a rope. When you have about 1 inch of twisted wire, stop and cut the looped end off leaving about $1 / 2$-inch of twisted wire (this forms the capacitor) and $1 / 2$ inch of untwisted wire for leads.
Capacitor C7, a $0.1 \mu \mathrm{~F}$ capacitor, is one of the most critical components in the circuit. You must place it across the L1-G2R9 assembly, as shown in Fig. 1, to reduce the amount of RF feedback you'll get into the rest of the circuit. The antenna (more 24gauge wire) should be soldered to the coil you made, about 2 turns up from the bottom, or the tran-
sistor side, and should be about 8-12 inches long.

Operation

To use the transmitter, set up a radio in the area at least 10 feet from the project. Find a blank spot on the dial and turn the radio up so you can hear the static.

Connect a 9 -volt battery to the transmitter and listen to the radio. Slowly adjust the tank capacitor (C5) until you "quiet" the receiver; this is the tuned spot. Note that when you remove your hands from the transmitter, you will detune the circuit somewhat. It is usually best to leave it detuned, and tune the radio in to get the best reception. If you cannot get the tuning range you desire, you can squeeze the coils in the tank circuit closer together to raise the frequency, or pull them apart just a little bit to lower it.

The circuit works best when powered by a battery, but if a wallderived supply is needed, make certain that the ripple voltage is as low as possible, or you will get hum in the receiver.

The powerful 68000 Learning Tool

$\$ 499.00$
Powerful debugger, casy interface to PC or terminal, expansion slots, removable breadboard, logic probe, 64 k RAM, 2 serial ports, experiments available, ideal for educational environment, wirewrap cards available.
30 day money back guarantee
Call: (602)829-6503
I.S.S.C., 6521 S. Terrace, Tempe AZ. 85283

BESTBYMAIL

Rates: Write National, Box 5, Sarasota, FL 34230 MONEYMAKING OPPORTUNITIES
WE PAY UP to $\$ 300.00$ weekly Woodburning Picture Frames. Everything supplied. No experience or selling Bay Frame, PO Box 1588-(RE), Jackson. TN 38302. MAKE $\$ 2,000$ MONTLY At Home. Write to Norton 34 1127 West Fairmont, Fresno, CA 93705.

OF INTEREST TO ALL

CITIZEN BAND RADIO DX. Derals $\$ 1.00$. CBR, Box 212, Rochelle Park, NJ 07662
LISA'S WEIGHTLOSS SECRET! Ring.System! Send \$3 and SASE: PO Box 13872, St. Petersburg, FL 33733. FREE BLACK BOOKS Catalog: Write: PO Box 754, Con cordville, PA 19331.

COMPUTER CONNECTIONS
 continued from page 93

Info and Disk Doctor programs; a file "shredder;" a smart file deletion program; and a detailed on-line help system that almost renders the manual unnecessary.

Of course, you can customize which drive and tool icons are displayed. You can also customize the NDW menus and many other aspects of the program. Unlike Windows' own ProgMan, NDW supports nested program groups.

NDW is not perfect, but it's much better than anything else on the market. If you buy only one Windows utility, this should be it. Contact Symantec Corporation, 10201 Torre Avenue, Cupertino. CA 95014-2132. (408) 253-9600

For 286 owners: Several companies have been advertising 386SX adapters that supposedly provide elegant upgrades. I've requested evaluation units from each manufacturer, and hope to have a report next time.

Book nook

If you're unsure what object-oriented technology is about, order a copy of Object-Oriented Technology: A Manager's Guide by David Taylor. The book costs only $\$ 10$, and is published by Servio corporation, where Taylor serves as Director of Strategic Planning. By reading fewer than 150 pages, you can learn the basics of inheritance, encapsulation, polymorphism, objects, methods, classes, class hierarchies, messagepassing, et al. Contact Servio Corporation, 1420 Harbor Bay Parkway. Alameda, CA 94501. (800) 243-9369.

If your work involves PC configuration, you'll want to check out The Hard Disk Technical Guide by Douglas T. Anderson. It's filled with detailed technical information on almost 1500 types of hard disks of all types, from dozens of manufacturers. The book also includes configuration information on dozens of hard-disk controllers, SCSI and ESDI installation, and BIOS drive tables. The book is constantly updated, and is currently in Revision E. New purchases cost $\$ 49.95+\$ 3 \mathrm{~S} / \mathrm{H}$; updates to prior versions are available at lesser cost. PCS Publications, P.O. Box 10492, Clearwater, FL 34615. (800) 741-3282. Fax: (800) 446-3157. R-E

LETTERS
continued from page 16

sult in super-miniature vacuum tubes that could compete with transistors in specialized applications.

Sure, tubes require higher voltages, more board or chassis space, a heater power supply, and they're old fashioned. My 1965 reel-to-reel tape deck is old-fashioned too, but its 16 Hz to $35-\mathrm{kHz}$ frequency response will beat most 1991 cassette decks any day. (My father is old-fashioned also. but I don't mock him and I wouldn't throw him in the trash!)

It's time that the vacuum tube was put in its proper place, as the father of transistors and as the device that is responsible for the development of all modern active electronics. As a professional technician and an experimenter, I challenge all these would-be technicians and wise-guy hobbyists who knock tubes to read and think about history, and to respect it. The Audion wasn't a dual-gate MOSFET, you know!

I haven't missed a single issue of Radio-Electronics in more than a decade. Keep up the excellent work. You truly are honoring the memory and work of the late Hugo Gernsback.
GREGG VAN DER STUYS
Mission, $B C$, Canada

AUDIOPHILE ATTITUDES, AGAIN

As previous readers of RadioElectronics (it has been over seven years), we were happy to receive the magazine again after a few of us electrical engineers decided that we wanted to share a subscription at work. Radio-Electronics truly is a good magazine.

We opened up the July issue to the Letters column and read Paul J. Carlson's letter about "absurd speaker cables," "antiquated tube amplifiers," and "Creation Science." The truth is that tweaking an audio system can easily make substantial audible improvements-but only if you have ears! (Owning decent equipment also helps.) Speaker cables do sound different. Some cables sound much better than others, and sometimes cheap 18-gauge zip cord might sound the best. As electrical engineers, the difference in sound bothered us enough to search for an answer.

Without getting into systems design (La Place transforms, differential equations, Mason's Theorem, etc.), here's a brief and simplified explanation. Most reasonable-quality, modern power amplifiers are feedback amplifiers. Loudspeakers are transducers that also act as elećtrical generators with a very complex transfer function. An amplifier must contend with a loudspeaker's back EMF and particular transfer function. Loudspeaker cables between the loudspeaker and the amplifier also "add" their own transfer function as they have resistance, inductance, and capacitance associated with them. We now have three complex transfer functions to deal with (speakers, cable, and amplifier). Now, look at a schematic of a transistor (feedback) amplifier. Where does the differential input (front end) get its signal to close the feedback loop? Right from the speaker terminals that are getting "hit" with the loudspeaker's back EMF modified by the speaker cables placed in series!

But that's not all that impacts on overall performance. The loudspeaker cables also modify the loudspeaker's transfer function. Neglecting (for simplicity) the capacitance and inductance of the cables and looking only at resistance, three very audible effects can occur. First, the series resistance modifies the " Q " factor, or tuning, of the speaker system. More series R yields a higher woofer "Q" factor, and a "warmer" or sometimes an exaggerated bass response results. Second, varying a cable's resistance also shifts the crossover frequencies and phase response of a loudspeaker system. Third, the cable's series R affects the amount of interaction between drivers in a multi-way loudspeaker system. The back EMF from a woofer is not as easily "shorted-out," because of the cables resistance and hence can affect the other drivers.

Our point is that things aren't always as simple as we'd like them to be. We must keep an open mind. As we learn more, we can quantify more of the parameters associated with what makes something work, or sound, better. Until we "know it all," we can't discount the mysterious "'art" part of audio engineering. FRED J. JANOSKY DONALD E. KUJAWSKI Reading, PA

LASER DIODES

STOCK \＃	MFG．	WAVE－ LENGTH	OUTPUT POWER	OPER． CURR．	OPER． VOLT．	PRICE
LS9220	TOSHIBA	660 nm	3 mW	85 mA	2.5 v	129.99
LS9200	TOSHIBA	670 nm	3 mW	85 mA	2.3 v	49.99
LS9201	TOSHIBA	670 nm	5 mW	80 mA	2.4 v	59.99
LS9211	TOSHIBA	670 nm	5 mW	50 mA	2.3 v	69.99
LS9215	TOSHIBA	670 nm	10 mW	45 mA	2.4 v	109.99
LS3200	NEC	670 nm	3 mW	85 mA	2.2 v	79.99
LS022	SHARP	780 nm	5 mW	65 mA	1.75 v	19.99

LASER TUBES

Dynanic RAMS						EPROMS				
STOCK \＃	DESC．	SPEED	1－24	25－99	100＋	STOCK \＃	SPEED	1－24	25－99	$100+$
41256－60	256K $\times 1$	60 ns	2.59	2.46	2.21	2716	450 ns	3.29	3.13	2.82
41256－80	$256 \mathrm{~K} \times 1$	80 ns	2.19	2.08	1.87	2732	450 ns	4.19	3.98	3.58
41256－100	$256 \mathrm{~K} \times 1$	100 ns	1.99	1.89	1.70	2732A	250 ns	3.29	3.13	2.82
41256－120	256K $\times 1$	120 ns	1.89	1.80	1.62	2764	250 ns	3.49	3.32	2.99
41256－150	$256 \mathrm{~K} \times 1$	150 ns	1.79	1.70	1.53	2764A	250 ns	3.09	2.94	2.65
511000－70	$1 \mathrm{meg} \times 1$	70 ns	5.49	5.22	4.70	27128	250 ns	4.79	4.55	4.10
511000－80	1 meg $\times 1$	80 ns	5.29	5.03	4.53	27 C 128	250 ns	4.79	4.55	4.10
511000－10	1 meg $\times 1$	100 ns	5.09	4.84	4.36	27256	250 ns	4.59	4.36	3.92
514256－70	$256 \mathrm{~K} \times 4$	70 ns	6.49	6.17	5.55	27C256	250 ns	4.29	4.08	3.67
514256－80	256K $\times 4$	80 ns	6.09	5.79	5.21	27512	250 ns	5.49	5.22	4.70
514256－10	256K $\times 4$	100 ns	5.69	5.41	4.87	27C512	250 ns	5.49	5.22	4.70
541000－80	$4 \mathrm{meg} \times 1$	80 ns	26.99	25.64	23.08	27C1024	200 ns	10.99	10.44	9.40
544256－80	$1 \mathrm{meg} \times 4$	80 ns	31.99	30.39	27.35	27C2048	200 ns	21.99	20.89	18.80

STOCK \＃	WAVELENGTH	OUTPUT POWER （MIN．）	OUTPUT POWER （MAX．）	BEAM DIAM．	BEAM DIVIERG．	POLARI－ ZATION	OPERATING VOLTAGE	OPER． CURR．	FIRING VOLT．	MIN． SERIES RES．	SIZE D X L （IN MM）	WT． （GM．）	$\begin{aligned} & \text { BRH } \\ & \text { CL. } \end{aligned}$	$\begin{gathered} \text { PRICE } \\ 1-9 \end{gathered}$	10^{+}
LT7770	543nm（Green）	0.5 mW	1.0 mW	0.71 mm	$\leq 1.2 \mathrm{mrad}$	random	$1750 \mathrm{v} \pm 110 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81k \boldsymbol{n}	37×350	200	II	799.99	749.99
LT7650	632.8 nm （Red）	0.5 mW	2.0 mW	0.49 mm	$\leq 1.7 \mathrm{mrad}$	>100.1	$1000 \mathrm{v} \pm 100 \mathrm{v}$	3.5 mA	$<7 \mathrm{kV}$	68 k n	25×146	70	IIIa	529.99	479.99
LT7656	632.8 nm （Red）	0.5 mW	2.0 mW	0.34 mm	$\leq 2.4 \mathrm{mrad}$	random	$1050 \mathrm{v} \pm 100 \mathrm{v}$	2.8 mA	$\leq 8 \mathrm{kV}$	82k $\boldsymbol{\Omega}$	22.5×118	60	Illa	134.99	124.99
LT7655	632.8 nm （Red）	0.5 mW	2.0 mW	0.49 mm	$\leq 1.7 \mathrm{mrad}$	random	$1000 \mathrm{v} \pm 100 \mathrm{v}$	3.5 mA	$\leq 7 \mathrm{kV}$	68 k n	25×150	70	IIIa	144.99	134.99
LT7655S	632.8 nm （Red）	1.0 mW	2.0 mW	0.49 mm	$\leq 1.7 \mathrm{mrad}$	random	$1000 \mathrm{v} \pm 100 \mathrm{v}$	3.5 mA	$\leq 7 \mathrm{kV}$	68k Ω	25×150	70	11 a	159.99	144.99
LT7632	632.8 nm （Red）	1.2 mW	3.0 mW	0.61 mm	$\leq 3.0 \mathrm{mrad}$	random	$1300 \mathrm{v} \pm 100 \mathrm{v}$	3.5 mA	$\leq 7 \mathrm{kV}$	81k \boldsymbol{n}	20×210	70	IIIa	249.99	229.99
LT7621S	632.8 nm （Red）	2.0 mW	5.0 mW	0.75 mm	$\leq 1.2 \mathrm{mrad}$	random	$1300 \mathrm{v} \pm 100 \mathrm{v}$	5.0 mA	$\leq 7 \mathrm{kV}$	68k Ω	30×255	140	Illa	204.99	191.99
LT7634	632.8 nm （Red）	2.0 mW	5.0 mW	0.75 mm	$\leq 12 \mathrm{mrad}$	$>500: 1$	$1300 \mathrm{v} \pm 100 \mathrm{v}$	5.0 mA	$\leq 7 \mathrm{kV}$	68k Ω	30×255	140	Ilia	209.99	194.99
LT7621MM	632.8 nm （Red）	5.0 mW	15 mW	1.0 mm	$\leq 2.5 \mathrm{mrad}$	random	$1250 \mathrm{v} \pm 100 \mathrm{v}$	6.5 mA	$\leq 7 \mathrm{kV}$	68 k 几	30×255	140	11 lb	359.99	334.99
LT7627	632.8 nm （Red）	5.0 mW	15 mW	0.80 mm	$\leq 1.1 \mathrm{mrad}$	random	$1900 \mathrm{v} \pm 100 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81k Ω	37×350	200	1 lb	369.99	344.99
LT7628	632.8 nm （Red）	5.0 mW	15 mW	080 mm	$\leq 1.1 \mathrm{mrad}$	$>500: 1$	$1900 \mathrm{v} \pm 100 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81k Ω	37×350	200	111 b	389.99	364.99
LT7627MM	632.8 nm （Red）	10 mW	30 mW	1.2 mm	$\leq 4.0 \mathrm{mrad}$	random	$1750 \mathrm{v} \pm 100 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81k Ω	37×350	200	Нь	479.99	444.99

Laser Pointer
－Output： 3.5 mW
－Wavelength： 670 NM
－Power Supply： $2 \times$ AAA Batteries
（included）
－Beam：Approx． 3 ＂＠ 100 yards
Quantity Discounts Available
STOCK \＃
LSPOINT
LSRE
L199．99

Disc Drive Head－ Cleaning Kit

Includes cleaning fluid and head－cleaning diskette
STOCK \＃PRICE
SB1105 31／2＂Drive Kit \＄1．99
SB1106 511／4＂Drive Kit \＄1．99

－Input $115 / 230 \mathrm{~V}$
－Output：＋5v＠3．75A
＋12v＠1．5A
－12v＠．4A
－Size： $7^{\prime \prime} L \times 5 / /^{\prime \prime} W \times 2^{1 / 2^{\prime \prime}} H$

STOCK \＃	PRICE
PS1003	$\$ 19.99$

Anti－Static Screen Wipes

For static－sensitive applications． Dispenser packs，individually wrapped． STOCK \＃PRICE SB1104 Dispenser pack \＄1．99 of 25 wipes
SB1107 Dispenser pack \＄4．99 of 100 wipes

－Output： 2.5 mW （max．）
－Current：90－150 mA
－Op．Volt．：2．2－2．5V
－Wavelength： 820 NM
－Data Sheet inc．

STOCK \＃	PRICE
SB1052	$\$ 39.99$

Robotic Arm Kit

Robots were once confined to science fiction movies．Today，whether they＇re performing dangerous tasks or putting together compiex
products，robotics are finding their way into products，robolics are finding ther way into Kit is an educational kit that teaches basic robotic arm fundamentals as well as testing your own motor skills．Command it to perform simple tasks．

Disc Drive \＆Computer Cleaning Kit

Not just a drive cleaner－but a complete computer cleaning kit．Includes swabs head cleaning fluid，anti－static cleaner screen wipes and cleaning diskette．
STOCK \＃PRICE SB1099 $31 / 2^{\prime \prime}$ Kit $\quad \$ 6.99$ SB1100 511／4＂Kit $\quad \$ 6.99$ Avoider Robot Kit

An intelligent robot that knows how to avord hitting walls．This robot emits an infra－red beam which detects an obstacle in front and then automatically turns left and continues on．

STOCK \＃	PRICE
MV912	$\$ 49.99$

ORDER LINE－（800）824－3432
INTERNATIONAL ORDERS
（818）341－8833
FAX ORDERS－（818）998－7975
TECHNICAL SUPPORT－（818）341－8833

Highest Quality Metal Cassettes（Erased）

Premium quality metal tape in C－60 and C－90 cassettes（30 or 45 min ．per side）．One of the finest brand－narne＂tapes on the market，In durable，clear plastic transport machanisms．Recorded and bulk erased，the record－protect tabs have been removed and therefore，need to be taped over to re－record．Audiophiles will appreciate the wide dynamic range of this tape．If your cassette deck has a＂metal＂settlng you will hear the difference．A real bargain 60 min ．lape－CAT C－60M $\$ 1.25$ each－ 10 for $\$ 10.00$ 90 min t tape－CAT

CASSETTE STORAGE CASE
Black，unbreakable plastic audlo cassette storage case． CAT CBOX 5 for $\$ 1.00 \cdot 100$ for $\$ 15.00$

WIRELESS REMOTE CONTROL FOR NINENDO ${ }^{\text {rM }}$
 those used on TVs and VCF＇s eliminates messy wires．Allows players more moblity．Two players can use one remote unk except on games where they play simultaneously．In those games two＂Freedom Connectons＂unts are required．A woll－known national discoum toy chain sells these for more than twice our price．Operates on 4 ANA bstteries（not incuded）．

Set of 4 AAA batteries CATH BAT－4AAA 2.40 per set

TOUCH DIMMER
The＂brain＂ part of the ＂LITE TOUCH＂ touch dimmer， when connected to any lamp，will turn it on and otl and change the brightness level when any metal part is touchod．We don＇t have the wiring harness that origt nally connected this to the lamp，but we can provide a simple hook－up dlagram and instruction sheet．The solld－state cir－ cutry contalned In a thermo－ plastic box $1.91^{\prime \prime} \times 3.11^{\prime \prime} \times 0.835^{\prime \prime}$ ． CAT DMR－1 $\$ 3.50$ each
OPTO－SENSORS
GE H1381 U－shaped oplo with $0.125^{\prime \prime}$ gap betwoen emmiter and sensor． $0.75{ }^{-1}$ mounting cemers． CATM OSU－11 2 for $\$ 1.00$
TRW／Optron OPB5447－2 IR emiter／sensor pair in Rectangular package with 28^{-}color coded leads． CATU OSR－4 2 for $\$ 1.00$

ULTRASONIC CERAMIC

 MICROPHONETTRANSDUCERPanasonic（Matsushta）
＊EFR RCBK40K54
part of the

An utrasonic milgrophone consisting of a bimorph
vibrator．Ideal for burgiar alarms，auto door openers，flow rate detectors and re－ mote control systerns．Nom．Freq．40kHz． Max Inout volts： 20 Votts．15／16＂dla X 38° high． 58° long leads．

$$
\text { CAT. UST-1 } \$ 1.00 \text { each }
$$

HEAT SINK COMPOUND

GC Eiectronics \＃10－8109－For effective transier of heat between componemts and heat sinks． 79 sllicone heat sink com－ pound．CATM HSC－1 $\$ 2.00$ per 102 tube

ATTENTION NINTENDOTM USERSII！

Turne your whed Nintend conne ind into a remote control unit．Infrared remote like CATH IR－1 \＄9．95 each

L．E．D．＇s
Standard JUMBO Diflused T 1－3／4 size（5 mm）

RED CATHLED－1

 10 for $\$ 1.50 \cdot 100$ for $\$ 13.00$ GREEN CAT\＃LED－2 10 for $\$ 2.00 \cdot 100$ for $\$ 17.00$ YELLOW CAT LED－3 10 for $\$ 2.00 \cdot 100$ for $\$ 17.00$FLASHING LED
W／bult in flashing circuit 5 volt operatlon．T 1－3／4 $(5 \mathrm{~mm})<$

RED $\$ 1.00$ each
CAT\＃LED－4 10 tor $\$ 9.50$
GREEN \＄1．00 each CATM LED－4G 10 for $\$ 9.50$ YELLOW $\$ 1.00$ each CATI LED－4Y 10 for $\$ 9.50$ LED HOLDER Two plece holder． 9 o CATHLED 10 for 65

RECHARGEABLE BATTERIES

Nickel－Cad

 E8SWITCHES
Pushbutton Switch

AAA SIZE $\$ 1.50$ each 1.2 volts 180 mAh CATI NCB－AAA
AA SIZE $\$ 2.00$ each 1.25 volts 500 mAh CATM NCB－AA

AA SIZE $\$ 2.20$ each WITH SOLDER TABS CATH NCB－SAA
C SIZE \＄4．25 each 1.2 volte 1200 mAh CAT：NCB－C
D SIZE $\$ 4.50$ each 1.2 volts 1200 mAh CAT\＃NCB－D

Textool \＃224－3344． Protect 24 pin dip C＇s from damage during lest，burn－in
 or programming．
Lever－operated mechanism
locks part securely in place and releases it with no darnage to component leads． CATH IF － 24 \＄4．50 each

WALL TRANSFORMERS

2.1 mm D．C．power plug with center negative．White case． CAT：DCTX－125W $\$ 4.50$ each 12 Vdc 200 ma ．
2.1 mm D．C．power plug with center nega－ the．CAT DCTX－122 $\$ 3.00$ each

HALL EFFECT SENSORS

Microswitch \＃SS4 1
Tiny，solid state switch
 reacts Inslantly to
proximity of magnetic field．
Operates at extremely high speeds，up to 100 khz ．Case size： $0.12^{-} \times 0.17 \times 0.06^{\prime \prime}$ thick 4.5 Vdc to 24 Vdc supply voltage． 10 ma ． mk type dightal output．Operating gauss－ 15 to 40 ．P．C．leads．

24 PIN ZERO NSERTION FORCE SOCKET

 12 Vdc 500 ma ．

 CAT：HESW－2 75 e each－ 10 for $\$ 6.50$ 100 for $\$ 60.00$－ 1000 for $\$ 500.00$
Spraque \＃UGN3075LT

\qquad Ooerates on 4．5－24 Voks Can sink 10 ma．With suttable output pull up，can be used directly with blipolar or CMOS logic circults．Especially sulted for electronic commutation in brushless D．C． motors using multiple ring magnets．Very thyy surface mount package $0.175^{\prime \prime} \mathrm{X}$ $0.09^{-} \times 0.08^{\prime \prime}$ thick

CAT HESW 52 for $\$ 1.00$
100 for $\$ 45.00$ Large quantilies avallable

SM

Manutacturing 0.47 square black pushbutton SPST normally open． 4 p．c．pins for moum－ ing．Weal for low current switching appilcations． CAT：PB－29
5 for $\$ 1.00 \cdot 100$ for $\$ 15.00$
SPST N．O．
Pushbutton SPST normally apen p．c．mount 0.47^{\prime} square mounting pad．Plunger ex－ bends 0.47 above 8 urface． No pushbutton cap avallable． ideal，inexpensive switch where looks are not impor－ tant． 4 p．c．pins on 0.2 X 0.5^{4} mounting centers． CAT：PB－35 5 for $\$ 1.00$

Minl Snap－Actlon Omron D2F－L Miniature snap－action swhich whth lever．Rated lover．Rated 1 amp \＆ 125 Vac． $0.50^{\circ} \mathrm{LX}$ $0.26^{\circ} \mathrm{HX} 0.22^{\circ} \mathrm{W}$ ．Lever cextends $0.05^{\prime \prime}$ beyond end of owthch．CAT算 SMS－282
$75 c$ each $\cdot 10$ for $\$ 6.50$

RFI／EMM L／NE

 FILTER

Corcom 20B6 20 amp RFVEMI general pu pose common－mode ther． Controts line－to－ground nolee．Smal size，low leak－ 20e． $3.46^{\circ} \times 1.16^{-} \times 2.81^{\prime \prime}$ ． UL and CSA lisied

L．ED．FLASHER KIT

Two L．E．D．＇s flash in unison when a 9 volt battery le artached． This kit includes a
 p．c．board，all the parts and Instructions to make a simple flash－ er circult．A quick and easy project for anyone with basic soldening sidile． CAT莮 LEDKIT $\$ 1.75$ per kt

L．E．D．CHASER KIT Bulld this variable speed led chaser．＂REDSOSpe＂g 10 leds tlash sequentially at en－Mç whatever speed you set thern for．
Easy to bulld kit includes pc board， parts and hastructions．Ideal for special lighting effects，costumes，etc．Oper－ ates on 3 to 9 volts．PC board is 5＂X 2．25＂．A great one hour project． CATH AEC 56.50 each

STEPPING MOTOR CONTROLLER KIT

Learn about
stepping motors whilie bullding thats
Includes circult board，stepping motor and all parts except 12 Vdc power supply．CATM SMKIT $\$ 18.00$ each

METRONOME KIT

This simple device can be set to chlck from 20 to 1,000 beats per minute． Easy to build，includes circult board，a components and instructions．Oper－ ates on a 9 vot battery（not included）． CAT曾 METRO $\$ 3.75$ each

PHOTO RESISTOR

1,000 ohrms bright light． 18 K ohms dark．
0.182^{\prime} dian $X .00^{\prime} h i g h .0 .18^{\prime \prime}$ long leads．
CAT：PRE－7 2 for $\$ 1.00$
100 for $\$ 45.00 \cdot 1000$ for $\$ 400.00$

ORDER TOLL FREE 1－800－826－5432

FAX（818）781－2653 • INFORMATION（818）904－0524

Call Or Write For Our Free 64 Page Catalog

Outside the U．S．A．send $\$ 2.00$ postage for a catalog．

Minimum Onder $\$ 10.00$－All Orders Can Be Charged To Visa，Mastercard Or Discovercard ．Checks and Money Orders Accepted By Mail • California，Add Sales Tax ．Shipping And Handling $\$ 3.50$ for the 48 Continental United States All Others Including Alaska，Hawaii，P．R．And Canada Must Pay Full Shipping Quantities Limited • No C．O．D．－Prices Subject to change without notice．

POWER SUPPLY SPECIAL - LIMITED OFFERING

PSMB15

Limited to stock on hand only - Call now while they last.

Order \#	Price		$\begin{gathered} \hline \text { Dimensions } \\ \mathrm{H} \times \mathrm{W} \times \mathrm{D} \end{gathered}$	Input	Output			Weight (lbs.)
	$1-9$	10+			-5V	+12V	+5V	
PSMB7	14.95	13.95	$4.125^{\prime \prime} \times 2.15^{\prime \prime} \times 6.4$ "	115 V AC	1A	1 A	7 A	1.6
PSMB10	16.95	15.95	$4.125^{\prime \prime} \times 2.15^{\prime \prime} \times 6.4^{\prime \prime}$	115 VaC	1A	1 A	10A	1.65
PSMB15	19.95	18.95	$4.875^{\prime \prime} \times 2.0^{\prime \prime} \times 6.9^{\prime \prime}$	115 VaC	1A	2 A	15A	1.75

The perfect power supply for your test bench, parts box or hamshack. These units are vented for cool operation, heavy duty aluminum construction and finished in matt black.

90 day warranty.

Winning Products at

Test/Measurement and Prototype Equipment

51-Piece Electronic Tool Kit
Tools Included in Kit:

- 10 ' measuring tape
- 5.25^{n} needle nose pliers
- Llecrric tape
- Urility components hox
- 6 priece precision screwdrivet se
- $6^{\prime \prime}$ long tweezers
- 8 piece hex key wench set
- $7^{\prime \prime}$ brush and seraper
- Diginal Multimeter
- Bush
- 7 " fine point probe
- Round needle file
- 10 piece screwdriver ser: 6 Slotted \& 4 Phillips - 7" slorted probe
- Har needle file
- $4.5^{\prime \prime}$ diagonal cutting pliers - 6 " adjustable wrench

MS305.

- $5.25^{\prime \prime}$ Flar nose pliers
- 30 Watt soldering iron
- Utility knife with extra
blade
- 5.5 " Stainless steel scissors
- Desoldering punp
- $5.25^{\prime \prime}$ Bent needle nose
pliers
- Soldering stand
- Rosin core soldet
- Carrying case:
$17.63^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{D} \times 3.5^{\prime \prime} \mathrm{H}$
 Order Hotline!
$1.800 \cdot 831-4242$

Global Specialties Protoboard ${ }^{\circledR}$ Design Station

Features:

- Leteal for analog digital and microprocessor circuits
- Triple DC regulared powe supplies. $+5 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V}$ - 8 logic indicators
- Function generator with
sine. square. triangle and T7L waveforms
- Tiwo dehounced push-buton switches
- J'wo SPD I' slide switches, all leads available and uncommed
A total of 2520 uncommited rie-points

- Potentioneters: one 1 kS and one $10 \mathrm{~K} \Omega$ - Includes power supply, instrumemation and breadboarding

PB503.
$\$ 299.95$

Weller Soldering and Desoldering Stations

- Temperature adjustahle from 350° wo $850^{\circ} \mathrm{H}$
- /ero volage circuir protects sensitive components from damage - Lighred on/off swirch

WCC100 Soldering Station................... $\$ 89.95$

- 50 Water Temperature Convolled Desoldering Station
- Desoldering head is remperature controiled to $800^{\circ} \mathrm{F}$
- Low mainumance vacuam system

DS600 Desoldering Station............. $\$ 549.95$
WCC100

- I'ograms all current EPROMs in the 2716 to 27512 range plus the X2864 FEP 1 ROM1 - RS232 port - Sofinare included

EPP.
$\$ 199.95$

UVP EPROM Eraser

- Erases all EPROM's - Erases 1 chip in 15 minures and 8 chips in 21 min - UV intensity: 6800 UW/CM?
.$\$ 89.95$

EPROMs - for your programming needs

[^5]
Competitive Prices

 Computer Products and Electronic Components

 Computer Products and Electronic Components}

Assemble Your Own Computer Kit!

Jameco 16MHz 803865X Desktop Computer Kif

- Building your own computer provides you with a better understanding of components and their functions
- In-deprh assembly instructions included Have your new computer assembled and running in an evening, using common tools - Sofisare included
- Purchase computer hirs configured by lameco or design your own

Includes:

- 80386SX Motherhoard with
2.1B RA.11 (expandahie to 8.11B)
- 101-key enhanced kevhoard - Multi I/O Card w/ controller - Toshiba 1.44MB, 3.5' floppy disk drive
- Baby sized deskop case - 200° Watt power supply - DR DOOS 5.0
- AMI diagnostic softrare

JE3816................. $\$ 699.95$

Integrated Circuits*

Part No.	1-9	$10+$
7400	. $\$.29$	\$. 19
7402	. 29	. 19
7404	. 29	. 19
7405	. 29	. 19
7406	.. . 35	. 25
7407	. 35	. 25
7408	. 35	. 25
7410	. 29	. 19
7411	. 29	. 19
7414	.. 35	. 25
7417	. 35	. 25
7420	. 29	. 19
7427	. 35	. 25
7430	. 29	. 19
7432	. . 35	. 25
7438	. . 45	. 35
7442	.. . 49	. 39
7445	.. 75	. 65
7446	.. 99	. 89
7447.	. 89	. 79
7472	. 1.19	1.09
7473	.. 49	. 39
7474	.. . 39	. 29
7475	.. . 49	. 39
7476	.. 45	. 35
7483	.. 69	. 59
7486	.. 45	. 35
7489	. 2.95	2.75
7490	. . 59	. 49
7493	.. 45	. 35
74116	1.29	1.19
74121	.. . 49	. 39
74123	.. . 49	. 39
74125	.. . 45	. 35
74151	.. 39	. 29
74160	.. 59	. 49
74161.	.. 69	. 59
74192	.. 79	. 69
74193.	.. 79	. 69
74194	. 1.19	1.09

[^6]Values available (insert ohms into space marked "XX")

Relisys 14" VGA Color Monitor

- Mix resolution: 720×480 - Bandwidth: 30M1Hz - Input: DB15-pin (analog) RE9513
.$\$ 379.95$

Mard Drives Conner (1 6-bis IDE)

CP3000 40MB 3.5" Low Protile $\$ 249.95$ CP30084 80N1B 3.5"Low Profile........ $\$ 459.95$ CP30104 120M13 3.5" Low Profile $\$ 599.95$ CP3204 200MB 3.5"HH $\$ 799.95$
ADP20
Host Adapter
. $\$ 29.95$

Additional IDE controllers and drives atrailable!

Jameco 16-bit Super VGA Card

- Fmulates VGA, EGA, CGA. MDDA and Hercules modes - Includes 512 kB video RAM upgradable to 1 MB (Four 514256-80) • Capable of 1024×768 with 256 colors (1.1 B video R $1 \$ 1$ required) JE1058S. \qquad

Part No.	onnectors Description	Price	IC Sockels			
DB25P	Malc, 25-pin	\$.65	8LP	\$. 10	8WW	\$.49
DB25S	Female, 25-pin	. 75	14LP	8.10 .11	14WW	$\$.49$.69
DB25H	Hood	. 39	16 LP	. 12	16 WW	. 79
DB25MH	Meral Hood	1.35	24LP	. 12	24WW	.79 1.15
LEDs			28LP	. 22	28WW	1.39
			40LP	. 28	40WW	1.89
XC209R	T1, (Red)	\$.14	Soldertail Stundard and Header Plug Sockets Also Availidele			
XC556G	T1 3/4, (Green)	. 16				
XC556R	T1 3/4, (Red)	. 12				
XC556Y	Tl 3/4, (Yellow)	. 16				

Miscellaneous Components

Pofentiomefers

500 s , $1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{~L} 1 \mathrm{G}: \mathrm{G}$
43PXX 3/4 Wat, 15 Turn \$.99
63PXX 1/2 Want, 1 Turn 89

Transistors And Diodes

PN2222	\$. 12	1N751	\$.15
PN2907	. 12	C106B1	. 65
1N4004	.10	2N4401	. 15
2N2222A	. 25	1 N4148	. 07
1N4735	. 25	2N3055	. 69
2N3904	.12	1 N 270	. 25
Switches			
JMT123	SPITT, On-On (Tongle) . \$1.15		
206-8	SI'ST, 16-pin (1) 1^{2}) \ldots...... 1.09		
MPC121	spdr. On-Olf-On (Foggle) 1.19		
MS 102	SPSt. Momentary		
	(I'ush-Buton) 39		

Dynamic RAMs

Part No. Description Price 4164-100....... $100 \mathrm{~ns}, 64 \mathrm{~K} \times 1$ \$1.89 4164-120....... $120 \mathrm{~ns}, 64 \mathrm{~K} \times 1.1 .69$ 4164-150...... 150ns, 64h $\times 1 \quad 1.49$ 41256-6060ns, 256 K x $1 \quad 2.49$ 41256-80 $80 \mathrm{~ns}, 256 \mathrm{~K} \times 1 \quad 2.19$ 41256-100 ...100ns, $256 \mathrm{~K} \times 1 \mathrm{l} 1.95$ 41256-120...120ns, 256K x i 1.79 41256-150 ...150ns, $256 \mathrm{~K} \times 1 \mathrm{l}$ 1.69 511000P-80...80ns. 1 M11ix 17.25 $511000 \mathrm{P}-10.100 \mathrm{~ns}, 1 \mathrm{AlB} \times 1 \quad 6.75$

24-Hour Toll-Free Order Hotline:
1-800-831-4242
Call or Write for a
$\underset{\$ 30.00 \text { Minimum Order }}{\text { - Data Sheets - } 50 \mathrm{c} \text { cach }}$

1355 Shoreway Road Belmont, CA 94002
FAX: $1 \cdot 800 \cdot 237-6948$
BBS Support: 415 637-9025
International Sales - Customer Service - Technical Assistance

- Credit Department • All Other Inquiries: $415592-8097$ • 7AM - 4 PM P.S.T.

[^7]THE ELECTRONIC GOLDMINE

AMAZING
 SCIENTIFIG \& ELECTRONIC PRODUCTS

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Fre	ormation Number	Page	-	Star Circuits	28
108	AMC Sales	. 83	-	TAB Books	15
107	All Electronics	. 102	92	Tektronix	42
-	Amazing Concepts	98. 106	190	Unicorn	101
177	American Reliance Inc.	. 17	194	US Cable	70
84	Appliance Service.	.. 17	181,182	Viejo Publications	81
191	Avex Probes	. 28	183	WPT Publications	85
77	B\&K Precision	. 87	192	Worldwide Cable	98

109 C \& S Sales 23

- CIE 11,27
Cable Warehouse 79
- Conmmand Productions 79
55
Contact East 17178127
58

Cook's Institute 81

Datak Corporation. 29
Deco Industries.17
EasyTech 103
Electronic Goldmine 106
Electronics Book Club 88
F. W. Bell Inc. 29
Fluke Manufacturing CV2
Fordham 3
Global Specialties 7
Grantham College 14
Jameco 104, 105
Jensen Tools 17
Kepro Circuit Systems. 16
M\&G Electronics 97
MCM Electronics 99
MD Electronics 96
Mark V. Electronics 97
NRI Schools 18
NTE Electronics 4
Optoelectronics 13
Parts Express 95PerCV4
Radio Shack 30
RE Video Offer CV3
SCO Electronics 70

ADVERTISING SALES OFFICE

Gernsback Publications, Inc.
$500-\mathrm{B} \mathrm{Bi}$-County Blvd.
Farmingdale, NY 11735
1-(516) 293-3000
President: Larry Steckler
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler publisher
Christina Estrada assistant to the President
Arline Fishman advertising director
Denise Haven
advertising assistant
Kelly McQuade
credit manager
Subscriber Customer Service
1-800-288-0652
Order Entry for New Subscribers
1-800-999-7139
7:00 AM - 6:00 PM M-F MST

SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan, Eastern Sales Manager
Radio-Electronics
1 Overlook Ave.
Great Neck, NY 11021
1-516-487-9357, 1-516-293-3000
Fax 1-516-487-8402
MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen, Midwest Sales Manager
Radio-Electronics
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
1-708-446-1444
Fax 1-708-559-0562
PACIFIC COAST/Mountain States
Marvin Green, Pacific Sales Manager Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001
Fax 1-818-986-2009
RE Shopper
Joe Shere, National Representative
PO. Box 169
Idyllwild, CA 92549
1.714-659-9743

Fax 1-714-659-2469

Gountersurveillance

Abstract

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices-and how to defend against experienced information thieves-been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words-precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or "sweep" a room clean.
There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveilance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before

Foiling Information Thieves

Discover the targets professional snoopers seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businnesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves eavesdrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man-especially if he is a thief?

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

have Your
VISA or MC CARD AVAILABLE

what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information
The open taps from where the information pours out may be from FAX's, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counselling on how to eliminate this information drain. Basic telephone use coupled with the user's understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remore-activated bugs. Some of this equipment can be operared by novices, others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laserbeam snoopers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

Th is advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing \$350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend Now, for only $\$ 49.95$ (plus $\$ 4.00 \mathrm{P} \& \mathrm{H})$ you can view Countersurveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon below or call toll free.

Now, You Can Eavesdrop On The World. Introducing the new Drake R8 Communications Receiver.
It's world class, world band radio, maderin the U.S.A. From Perth to the Persian Gulf, Moscow to Mozambique, local or global, you hear events as they happen with amazing clarity. Since 1943, Drake

has been setting the standards in electronic communications . . . and then raising them. Today, there's no better shortwave receiver than the Drake R8. Out-Of-This-World Performance. The new Drake R8 has more standard features than other shortwave radios. You get wide frequency range (100 KHz to $30,000 \mathrm{KHz}$), coverage of all world and local bands, and excellent dynamic range. But you also get important features you won't find on receivers costing hundreds of dollars more. A multi-voltage power supply. Pre-amp and attenuator. Five filter bandwidths and synchronous detector. Dual mode noise blanker and passband offset. Non-volatile 100 channel memory. All designed to give you the best reception with the least distortion. Down-To-Earth Design. The ergonomic design of the R8 gives you real ease of operation. You have convenient keypad entry, with large, legible controls. The face is bold. Uncluttered. And the liquid crystal display (LCD) is backlighted for easy reading. Try The R8... At Our Risk. If you're not impressed by Drake's quality, performance and ease of operation, return the R8 Receiver within 15 days and we'll refund your money in full, less our original shipping charge. For more information, or to order, call TOLL-FREE, 1-800-9-DRAKE-1. Telephone orders may be placed on a major credit card. $\$ 979.00$ (Shipping and handling $\$ 10$ in continental U.S. Ohio residents add 61/2\% tax.) Call TOLL-FREE, 1-800-9-DRAKE-1 today. You can't lose.

In touch with the world.
R.L. Drake Company • P.O. Box 3006 • Miamisburg, Ohio 45342 U.S.A.

[^0]: As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products. As a service th readers, materials and workmanship used by readers. RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information puhlished in this magazine.

 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.
 RADIO-ELECTRONICS, ISSN 0033-7862) November 199t. Published monthly by Gernsback Publications, Inc.. 500-B BiCounty Boulevard, Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. second-Class mail registration No. R125166280, authorized at Toronto, Canada. One-year subscription rate
 possessions $\$ 17.97$. Canada $\$ 25.65$ (includes G.S.T. Canadian Goods and Services Tax Registration No. R125166280), all other countries $\$ 26.97$. All subscription orders payable in U.S.A. funds only, via international postal money order or check drawn on'a U.S.A. bank. Single copies $\$ 2.95$. © 1991 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

 POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept.. Box 55115. Boulder, CO 80321-5115.

 A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^1]: Starting from scratchyou buid a complete system. Our Micro-Master trainer teaches you to write into RAMs, ROMs and run a 8085 microprocessor, which uses similar machine language as IBM PC.

[^2]: WARNING！！The information contained in this article is being provided solely to readers for educational purposes． Nothing contained herein suggests that the monitoring system described herein can be or should be used by the as－ sembler or anyone else in place of or as an adjunct to professional medical treat－ ment or advice．Neither the publisher nor the author make any representations as for the completeness or the accuracy of the information contained herein and dis－ claim any liability for damages or injuries， whether caused by or arising from the lack of completeness，inaccuracies of the in－ tormation，misinterpretations of the direc－ tions，misapplication of the information or otherwise．

[^3]: WANTED; old, Western Electric, McIntosh, Altec, Marantz Jensen JBL EMT Electrovoice, RCA Telefunken, Westrex, Fairchild, Fisher, Dynaco; tubes, speakers, amplifiers, (713) 728-4343. MAURY CORB, 12325 Ashcroft, Houston, TX 77035.
 TEST EQUIPMENT pre-owned now at affordable prices. Signal generators from $\$ 50.00$, oscilloscopes from $\$ 50.00$, other equipment, including manuals available. Send $\$ 2.00$ U.S. for catalog, refunded on 1st order. J.B. ELECTRONICS, 3446 Dempster, Skokie, IL 60076. (708) 982-1973.

[^4]: HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-R, Box 520 , Danville, NH 03819.
 MONEYMAKERS! Easy! One man CRT rebuilding machinery. $\$ 6,900.00$ rebuilt. $\$ 15,900.00$ new. CRTT, 1909 Louise, Crystalake, IL 60014. (815) 459-0666 Fax (815) 477-7013.
 RECESSION? Thriving fully equipped audio/video repair shop. $\$ 130 \mathrm{~K}+$ this year! Proven 40% + gross last three years. $\$ 70,000.00$ cash. AUDIOTECH, 256-B North Highway 101, Encinitas, CA 92024 FAX (619) 944-0345, Phone (619) 944-9048.

[^5]: - Partial Listing • Over 4000 Electronic and Computer Components in Stock!

[^6]: Call for a complete listing of IC's

[^7]: (1) 1991 Jameco Llectronics $1 / / 91$

 CA Residents $A d d 7.25 \%, 7.75 \%$ or 8.25% Sales lux
 Shipping, handling and insurance are additional.
 (Costs may varty according to weight and
 hipping mechod)

